Pond Siting Report

Florida Department of Transportation

District 2

SR 16 PD&E Study

(from International Golf Parkway to I-95)

St. Johns County, Florida

Financial Management Number: 210447-5

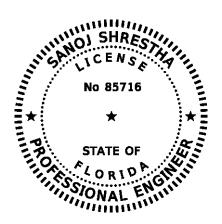
ETDM Number: 14535

July 2025

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. §327 and a Memorandum of Understanding dated May 26, 2022, and executed by Federal Highway Administration and FDOT.

Pond Siting Report

SR 16 Project Development and Environment (PD&E) Study


(from International Golf Parkway to I-95)
St. Johns County, Florida

Financial Project ID (FPID) Number: 210447-5

Efficient Transportation Decision Making (ETDM) Number: 14535

July 2025

THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY

Sanoj Shrestha 2025.07.24 15:48:29-04'00'

ON THE DATE ADJACENT TO THE SEAL PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.

RS&H, INC. 10748 DEERWOOD PARK BLVD SOUTH JACKSONVILLE, FL 32256 SANOJ SHRESTHA, P.E. NO. 85715

TABLE OF CONTENTS

1.0	Project Summary	1-1
1.1	Project Description	1-1
1.2	Purpose & Need	1-2
1.3	Alternatives Analysis	1-4
2.0	Existing Conditions	2-6
2.1	General Drainage Conditions	2-6
2.2	Drainage Basins	2-6
2.3	Receiving Waterbodies	2-6
2.4	Cross Drains	2-7
2.5	Previous Permit Information	2-7
2.6	Base Flood Elevation	2-7
2.7	Land Uses	2-8
2.8	Existing Deficiencies	2-8
2.9	Soil Types	2-8
2.10	Existing Stormwater Systems and Management Facilities	2-9
2.11	Existing Ground Contamination Concerns	2-9
2.12	Existing Historical / Archaeological / Environmental Concerns	2-9
3.0	Proposed Drainage Conditions	3-11
3.1	Onsite Drainage Basins	3-11
3.2	Offsite Stormwater Runoff	3-11
3.3	Water Quality / Water Quantity Requirements	
3.3 3.3	- ,	
	Floodplain Compensation Requirements	3-12

3.5	Proposed Drainage Improvements3-1			
3.6	Proposed Stormwater Management Facilities	3-14		
3.7	Bridge Structures	3-14		
3.8	Utility Conflicts	3-14		
4.0	Stormwater Ponds	4-15		
5.0	Results	5-17		
6.0	Conclusions	6-18		
	LIST OF TABLES			
	e 2-1: Summary of Existing Cross Drains			
Table 3-1: Summary of Floodplain Impact Volumes				
	e 3-2: Summary of Floodplain Compensation Areas e 4.1: Pond Site Evaluation Matrix Sources			
Table	5 4.1. Folia Site Evaluation Matrix Sources	4-10		
	LIST OF FIGURES			
Figur	e 1.1.1: Existing Typical Section	1-1		
Figure 1.1.2: Existing Typical Section				
_	re 1.2.1: Project Location Map			
Figur	e 1.3.1: Proposed Typical Section	1-4		
	APPENDICES			
	endix A – Figures			
	endix B – FEMA FIRM Panels			
	endix C – Drainage Maps			
	endix D – Pond Sizing Calculations			
	endix E – Pond Site Evaluation Matrix			
	endix F – Floodplain Impact and Compensation Maps endix G – Floodplain Compensation Site Evaluation Matrix			
, , , , ,	Than 5 Thoughain compensation site Evaluation Matrix			

Appendix H – Straight Line Diagrams

1.0 Project Summary

1.1 Project Description

This Project Development and Environment (PD&E) Study involves a 5.9-mile segment of State Road (SR) 16 from International Golf Parkway (IGP) to I-95 in St. Johns County, Florida, near the City of St. Augustine. A map of the project limits is shown in **Figure 1.2.1**. Within the study limits, SR 16 is functionally classified as an urban principal arterial – other from IGP to South Francis Road and rural principal arterial – other from South Francis Road to I-95. Between IGP and the St. Augustine Outlet Mall, approximately 5.1 miles, SR 16 is a two-lane undivided roadway with sporadic turn lanes and no pedestrian or bicycle features. **Figure 1.1.1** shows the existing typical section for this segment. From the St. Augustine Outlet Mall to I-95, approximately 0.8 miles, SR 16 is generally a four-lane divided roadway with a sidewalk located on both sides of the road; however, there is a 0.3-mile stretch with no sidewalk from the start of the four-lane section to the southern entrance of the St. Augustine Outlet Mall. **Figure 1.1.2** shows the existing typical section for this segment.

Figure 1.1.1: Existing Typical Section

Figure 1.1.2: Existing Typical Section

This study will evaluate widening the existing two-lane rural undivided roadway to a four-lane divided rural roadway. In addition, multi-modal transportation improvements including continuous bicycle and pedestrian facilities will be evaluated. SR 16 has one existing bridge (bridge number 780064) over Turnbull Creek. The structural integrity and functionality of this bridge will be evaluated.

1.2 Purpose & Need

The purpose of this project is to improve traffic mobility, reduce congestion, and address safety on SR 16 from IGP to I-95.

The project is needed to address traffic congestion and safety concerns. A secondary need for the project is to accommodate planned developments.

Figure 1.2.1: Project Location Map

1.3 Alternatives Analysis

SR 16 is divided into two segments: Segment 1: IGP to the St. Augustine Outlet Mall, and Segment 2: St. Augustine Outlet Mall to I-95. St. Johns County is upgrading the portion of SR 16 between IGP and the proposed CR 2209, approximately 0.75 miles. The proposed improvements described below will tie into the County's project.

Segment 1 will require milling, resurfacing, and widening to the existing SR 16 lanes (future eastbound lanes), along with constructing additional westbound lanes. The proposed typical section features a four-lane divided high-speed arterial with curb and gutter in the median and flush outside shoulders. The roadway consists of two 12-foot-wide lanes in each direction with a four-foot-wide paved inside shoulder and a 10-foot-wide outside shoulder (five-foot paved). The opposing lanes are divided by a 33.5-foot-wide raised grassed median (including the inside four-foot-wide shoulder width). A 12-foot-wide shared use path is proposed on both sides of SR 16. The existing right-of-way is approximately 200 feet, and no additional right-of-way is required to accommodate the proposed typical section. Figure 1.3.1 shows the proposed typical section for Segment 1.

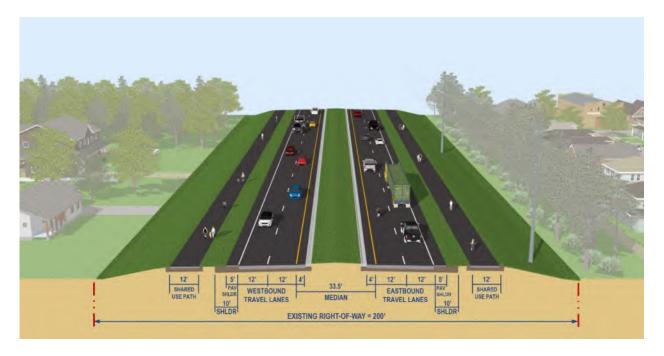


Figure 1.3.1: Proposed Typical Section

The proposed design speed is 45 miles per hour (mph) from IGP to CR 2209, 55 mph from east of CR 2209 to west of the St. Augustine Outlet Mall, then from St. Augustine Outlet Mall to I-95 is 45 mph.

SR 16 is currently a two-lane undivided roadway, which is classified as non-restrictive, meaning there are no median openings. Upgrading Segment 1 to a four-lane divided facility will require the implementation of access management. The proposed access management classification is Class 3, which states directional median openings may be spaced at 1,320 feet and full median openings or signals may be spaced every 2,640 feet.

Segment 2 is already four lanes in the existing condition. Segment 2 is anticipated to meet the target LOS of D with proposed intersection improvements, so no additional capacity is recommended within this segment. The shared use paths from Segment 1 will be extended and will tie into the existing sidewalk. Safety and operational improvements are being evaluated within this segment of SR 16, including the improvements to the Toms Road intersection. The Toms Road intersection features a through-cut intersection to better direct vehicles through the intersection and reduce the risk of head-on and left-turn crashes. Segment 2 will maintain its access management classification of Class 3.

2.0 Existing Conditions

2.1 General Drainage Conditions

The project is located along the existing SR 16 roadway corridor between International Golf Parkway and I-95 within the limits of the Sixmile Creek basin contributing to the Lower St. Johns River basin. The majority of the corridor drains to Turnbull Creek, while the western portion drains to Mill Creek, both tributaries ultimately to Sixmile Creek. The area along the corridor is generally flat and consists of undeveloped and developed upland areas draining towards lower wetland areas. The existing SR 16 road base was generally constructed at grade and is slightly elevated above the surrounding areas. Stormwater runoff sheds from the roadway pavement, collects in a series of roadside ditches, and is conveyed to Turnbull Creek, which crosses the corridor near the center of the project limits. Areas at the western end of the project are conveyed towards the IGP intersection towards Mill Creek.

2.2 Drainage Basins

As mentioned above, most of the corridor drains to Turnbull Creek, a named tributary of Sixmile Creek, while the western portion drains to Mill Creek, also a named tributary of Sixmile Creek. The basin divide is just east of the Mura Bella Community based on the U.S. Geological Survey (USGS) LiDAR data. West of the basin divide, stormwater runoff is collected and conveyed in roadside stormwater ditches west toward IGP and ultimately reaches Mill Creek. East of the basin divide, stormwater runoff is collected and conveyed in roadside stormwater ditches directly into Turnbull Creek. At the eastern end of the project, stormwater runoff is collected and conveyed in roadside stormwater ditches to a channel that eventually outfalls at the northern limits of Turnbull Creek. Both Mill Creek and Sixmile Creek are considered open basins that eventually outfall into the St. Johns River and the Atlantic Ocean. Within the project limits, the existing roadway basins total approximately 105 acres in area measured along the SR 16 corridor from IGP to I-95.

2.3 Receiving Waterbodies

Turnbull Creek is part of the Sixmile Creek Water Body Identification (WBID# 2411). Sixmile Creek is a class 3F water body and is not a verified impaired basin through the Florida Department of

Environmental Protection (FDEP)'s Total Maximum Daily Load (TMDL) Program. Mill Creek (WBID# 2460) is also a class 3F water body; however, it is a verified impaired basin for Iron and Escherichia coli. The watershed of Moultrie Creek (WBID# 2493) borders SR 16 at the St Augustien Outlet Mall, but stormwater runoff from this project does not drain into Moultrie Creek.

2.4 Cross Drains

There are multiple existing culverts within the project limits. **Table 2-1: Summary of Existing Cross Drains** provides a summary of the existing culverts. See **Appendix H – Straight Line Diagrams** for more information regarding the existing structures along SR-16.

		•	•	
Station	Mile Post	Cross Drain Size	Length (ft)	Stream Name
102+58.72	9.549	2 - 24"	102	Unnamed Tributary to Turnbull Creek
157+86.88	10.596	1 - 24"	82	Unnamed Tributary to Turnbull Creek
189+76.00	11.200	2 - 24"	86	Unnamed Tributary to Turnbull Creek
233+58.40	12.030	1 - 24"	94	Unnamed Tributary to Turnbull Creek
266+84.80	12.660	3 - 36"	86	Unnamed Tributary to Turnbull Creek
361+36.00	14.450	1 - 24"	106	Unnamed Tributary to Turnbull Creek
400+48.48	15.191	1 - 30"	121	Unnamed Tributary to Turnbull Creek

Table 2-1: Summary of Existing Cross Drains

2.5 Previous Permit Information

Existing Environmental Resource Permits (ERP) were not found within the project limits for the SR 16 corridor. Three offsite permitted stormwater ponds which outfall into the roadside ditches along SR 16 were identified:

- Clyde E. Lassen Veterans Nursing Home (ERP# 84623-27)
- Grand Oaks community (ERP# 139022-5)
- Turning Point Christian Academy (ERP# 93623-3)

2.6 Base Flood Elevation

The base flood elevation of Turnbull Creek at the existing SR 16 bridge crossing has been identified as elevation 23.0' from the FEMA Flood Insurance Study (12109CV001D). Upstream

from this crossing, Turnbull Creek flows parallel along the northside of the SR 16 corridor with base flood elevations ranging from 23.0′ to 26.0′. Further east along the corridor, small pockets of floodplains feature base flood elevations of 27.5′ (Park Wetland A) and 29.5′ (Park Wetland B). See **Appendix B – FEMA FIRM Panels** for additional information.

2.7 Land Uses

The land uses along the corridor includes low-density commercial and residential developments, cropland and pastureland, and undeveloped forested areas. It should be noted that the land use data is based on classifications provided by the St. Johns Water Management District (SJRWMD) and reflects imagery from St. Johns County captured between December 2020 and March 2021; actual land uses may have changed since that time. Refer to **Appendix A – Figures** for the Land Use Map.

2.8 Existing Deficiencies

The roadside ditches along SR 16 were observed to be generally wet, and due to the flat terrain, contain stagnant runoff water throughout the year. Due to the presence of water and wet conditions, the ditches appear to be unmaintainable during the wettest times of the year. Trash and other debris collect where ditches are unmaintainable. Although the roadside ditches are generally wet, there have been no records of significant flooding or roadway overtopping. With the SR 16 road base constructed at existing grade, and due to the presence of flat areas with stagnant water conditions, the roadway base presents substandard clearances above the water table along the low segments of the corridor.

No scour or other erosion problems were observed at the bridge crossing over Turnbull Creek.

2.9 Soil Types

The United States Department of Agriculture (USDA) Natural Resources Conservation Services (NRCS) National Cooperative Soil Survey indicates that the project area consists of soils with a variety of different hydraulic groups, ranging from A, A/D, B, B/D, C, C/D, and D. Refer to **Appendix A – Figures**, for the Hydrologic Soils map. Most of the soils within the project limits

are classified as fine sand and assigned dual hydrologic group (A/D, B/D, or C/D) based on their drained or undrained condition.

2.10 Existing Stormwater Systems and Management Facilities

As previously mentioned, stormwater runoff collects within roadside ditches and is conveyed to Turnbull Creek and Mill Creek. No existing stormwater management facilities or permits were identified along this segment of SR 16, and therefore, the existing roadway pavement is considered untreated.

2.11 Existing Ground Contamination Concerns

A Contamination Screening Evaluation Report (CSER) was conducted in July 2024 and later supplemented by a Contamination Screening Evaluation Technical Memorandum (CSE TM) in March 2025, which specifically addressed Ponds 4B, 4C, and 5C. The majority of the proposed pond sites received a "No" or "Low" risk rating. Three pond sites received a "Medium" risk rating, pond sites 1A, 1B, and 5B. None received a "high" risk rating. The results of the contamination screening are included within **Appendix E – Pond Site Evaluation Matrix** and **Appendix G - Floodplain Compensation Evaluation Matrix**.

2.12 Existing Historical / Archaeological / Environmental Concerns

A Cultural Resource Assessment Survey (CRAS) was conducted by SEARCH in January 2024 and amended in March 2025. Additionally, a Natural Resources Evaluation (NRE) was performed by SES Environmental Resource Solutions in August 2024 and amended in April 2025. Both reports are included under separate covers. The CRAS found the proposed SR 16 improvements will have no effect on cultural resources listed or eligible for listing in the National Register of Historic Places (NRHP). The NRE found Pond Alternatives 2B and 6A fall within conservation easements, and potential effects to listed species will need further coordination with state and federal agencies. A bald eagle nest was found at Pond Site Alternative 2C. The pond shape was revised to avoid impacts within 330 feet of the nest. Effects on the nest will need further coordination with state and federal agencies. This activity will occur in association with the permitting process. The

findings from these reports will be used to assess the historical, archaeological, and environmental impact.

3.0 Proposed Drainage Conditions

3.1 Onsite Drainage Basins

The proposed onsite drainage divides generally matches the existing drainage divides with the addition of stormwater management ponds. Basin limits have been outlined on the proposed drainage maps included in **Appendix C – Drainage Maps**.

3.2 Offsite Stormwater Runoff

As mentioned previously, there are several existing ponds adjacent to the corridor that outfall into the SR 16 roadside ditches. In the proposed condition, a roadside ditch will be maintained. The proposed drainage system will be designed to accept these offsite outfalls and convey them to Turnbull Creek during the final design phase.

3.3 Water Quality / Water Quantity Requirements

Project improvements will be designed to meet the regulatory requirements of the applicable water management districts, the requirements outlined in the FDOT Drainage Manual, and the requirements of the FDOT Design Manual. The entirety of the project is located within the regulatory authority of the St. Johns River Water Management District; therefore, an Environmental Resource Permit will be secured through this district.

3.3.1 SJRWMD Water Quality Criteria

For wet detention systems, the design treatment volume is the greater of the following: (a) one inch of runoff over the drainage area (b) 2.5 inches times the impervious area (excluding water bodies).

3.3.2 SJRWMD Water Quantity Criteria

(a) The post-development peak discharge rate must not exceed the pre-development peak rate of discharge for the mean annual 24-hour storm for systems serving both of the following: (1) New construction area greater than 50% impervious (excluding waterbodies)

- (2) Projects for the construction of new developments that exceed the thresholds in paragraphs 62-330.020(2)(b) or (c), F.A.C.
- (b) The post-development peak rate of discharge must not exceed the pre-development peak rate of discharge for the 25-year frequency, 24-hour duration storm for all areas of the District.

The FDEP maintains the Statewide Comprehensive List of Impaired Waters, which contains waterbody-parameter combinations that have been verified as impaired based on criteria and assessment methodologies. The waters are identified by their respective waterbody ID (WBID). This project discharges into WBID 2411, Sixmile Creek. Total Maximum Daily Load (TMDL) requirements have not been adopted for this WBID. This project is within the Lower St. Johns Basin Management Action Plan (BMAP). No Special Basin Criteria were identified for this area.

3.4 Floodplain Compensation Requirements

As discussed in the Location Hydraulics Report, the proposed project improvements will impact the adjacent floodplain. The floodplain impact volumes were calculated using the United States Geological Survey (USGS) LiDAR data and the mapped 100-year FEMA Floodplain. Refer to **Table 3-1** below for the floodplain impact volume estimated.

Table 3-1: Summary of Floodplain Impact Volumes

Area	Location	Volume (ac-ft)	Total Volume (ac-ft)
	Pond Alternative 2A	4.06	
	Pond Alternative 2B	2.45	
	Pond Alternative 3A	0.07	
1	Pond Alternative 3B	2.54	23.77
	Pond Alternative 3C	12.51*	
	Pond Alternative 4A	5.68	
	Roadway R/W at Turnbull	11.26*	
2	Roadway R/W West of Downs Corner Rd	1.84	1.84
3	Roadway R/W East of Downs Corner Rd	1.90	1.90

^{*}Values used for Area 1 total volume based on roadway and preferred pond impacts.

Floodplain Compensation Areas (FPCAs) are proposed adjacent to Turnbull Creek adjacent to the SR 16 corridor. The FPCA volumes were estimated between seasonal high-water elevations and the lesser of the existing ground or 100-year floodplain elevation. Refer to **Table 3-2** below for the FPCA volumes estimated using this method. The floodplain impact and compensation areas are depicted in **Appendix F – Floodplain Impact and Compensation Maps**.

Table 3-2: Summary of Floodplain Compensation Areas

Area	FPC Alternative	Volume (ac-ft)	R/W Area (ac)
	1A	33.40	15.79
1	1B	34.17	11.82
1	1C	39.29	9.60
	1D	32.68	8.64
2	2	1.90	2.78
3	3	1.95	1.58

During the final design phase, the roadway geometry will be optimized within the right-of-way to minimize the floodplain impact volume and will reduce the need for floodplain compensation. Additionally, stormwater management facilities should be designed to provide additional floodplain compensation, where possible. Refer to **Appendix G – Floodplain Compensation Site Evaluation Matrix** for a summary of the floodplain compensation alternatives analyses.

3.5 Proposed Drainage Improvements

The project proposes to reconstruct the existing two lanes, and to construct an additional two lanes in Segment 1. Stormwater runoff will be collected from the roadway surface via roadside ditches that will be conveyed to stormwater management facilities. Stormwater management facilities will feature control structures that will be designed to meet the required water quality and water quantity requirements and will ultimately convey treated runoff to Turnbull Creek.

Drainage requirements for improvement in Segment 2, St. Augustine Outlet Mall to I-95, were not evaluated. This segment will maintain the existing four lanes with minimal widening at the Toms Road interchange.

3.6 Proposed Stormwater Management Facilities

The proposed stormwater management facilities will be designed as wet detention facilities with the assumption that the seasonal high-water elevation (SHWE) is close to or at the existing ground elevation. Pond sites were selected adjacent to the corridor and within vacant parcels when possible. The normal water (NWL) elevation was set at the SHWE found in the USDA NRCS Web Soil Survey. The inside top of berm was set to 4 to 5 foot above the NWL, providing 4 feet of treatment and attenuation and 1 foot of freeboard. The rainfall depth for the 25-year 24-hour design storm was determined to be 8.60 inches using the National Oceanic and Atmospheric Administration (NOAA) Atlas 14. The USGS LiDAR terrain was used to calculate the predevelopment time of concentration. With these assumptions, ponds were sized to meet treatment and attenuation requirements.

The time of concentration calculations, pond treatment calculations, and ICPR modeling are included in **Appendix D – Pond Sizing Calculations**

3.7 Bridge Structures

Today, there is a single bridge crossing over (Turnbull Creek, #780064) within the project limits. This bridge structure was constructed in 1962 and was later reconstructed in 1971. The bridge is approximately 111 feet long and spans over the limits of the Turnbull Creek FEMA Floodway. A new proposed bridge structure will be constructed for both the eastbound and westbound lanes and will fully span the Turnbull Creek floodway.

3.8 Utility Conflicts

Telephone, electric, water, sewer, and gas lines were identified to be within 250 feet of the corridor. Pond infrastructure will be designed to avoid these when possible during the design phase.

4.0 Stormwater Ponds

When possible, two off-site pond alternatives have been provided for each basin. They can be found in **Appendix C – Drainage Maps**.

All pond alternatives have been added to **Appendix E – Pond Site Evaluation Matrix** and relevant pond location information has been added to help determine which alternative is the most suitable choice. Several categories are described as low, moderate, or high impact areas. Each category was assigned the potential level of impact using the following criteria:

- Low Pond alternatives that are more than 500 feet from an area of concern.
- Moderate Pond alternatives that are within 500 feet of an area of concern.
- High Pond alternatives that are within an area of concern.

See **Table 4.1** for the sources used in developing the Pond Site Evaluation Matrix.

Table 4.1: Pond Site Evaluation Matrix Sources

Matrix Category	Source(s)
Groundwater Condition	NRCS Soil Survey
Soil Condition	NRCS Soil Survey
Potential Hazardous Waste Contaminations	PD&E CSER Report, PD&E CSE TM Report
Potential Impacts to Protected Species	PD&E NRE Report
Potential Impacts to Cultural Resources	PD&E CRAS Report
Wetland Impacts	PD&E NRE Report
Potential Impacts to Utilities	Certified Power Plants, FGDL Electric Power Substations, Natural Gas Pipelines, FGDL Power Transmission Lines, Public Water Supply Plants, FGDL National Rail Network Railroads, Sabal Trail Transmission Natural Gas Pipelines, Transmission Lines, Wastewater Supply Plants
Existing Landscapes	SJRWMD Land Use Data
Adjoining Land Uses	SJRWMD Land Use Data
Aesthetic Effects	To be further considered during the design phase

Each pond alternative was also kept within the limits of one parcel, when possible. The alternatives were sited outside wetland limits when possible, but there are several cases where wetlands are impacted. Refer to **Appendix C – Drainage Maps** and **Appendix E – Pond Site Evaluation Matrix** for the locations. A discussion on how the preferred pond alternative was chosen is included in the Results.

5.0 Results

The analysis presented in this report identifies potential pond sites based on recent aerials and other preliminary data. Once the potential pond sites were narrowed down, a more detailed analysis was conducted utilizing the following parameters: right-of-way requirements, easement requirements, typical construction costs for a given pond site, hazardous materials, protected species, maintenance, cultural resources, wetland impacts, floodplain impacts, and impacts to other relevant features as noted in the pond site evaluation matrix provided in **Appendix E – Pond Site Evaluation Matrix**.

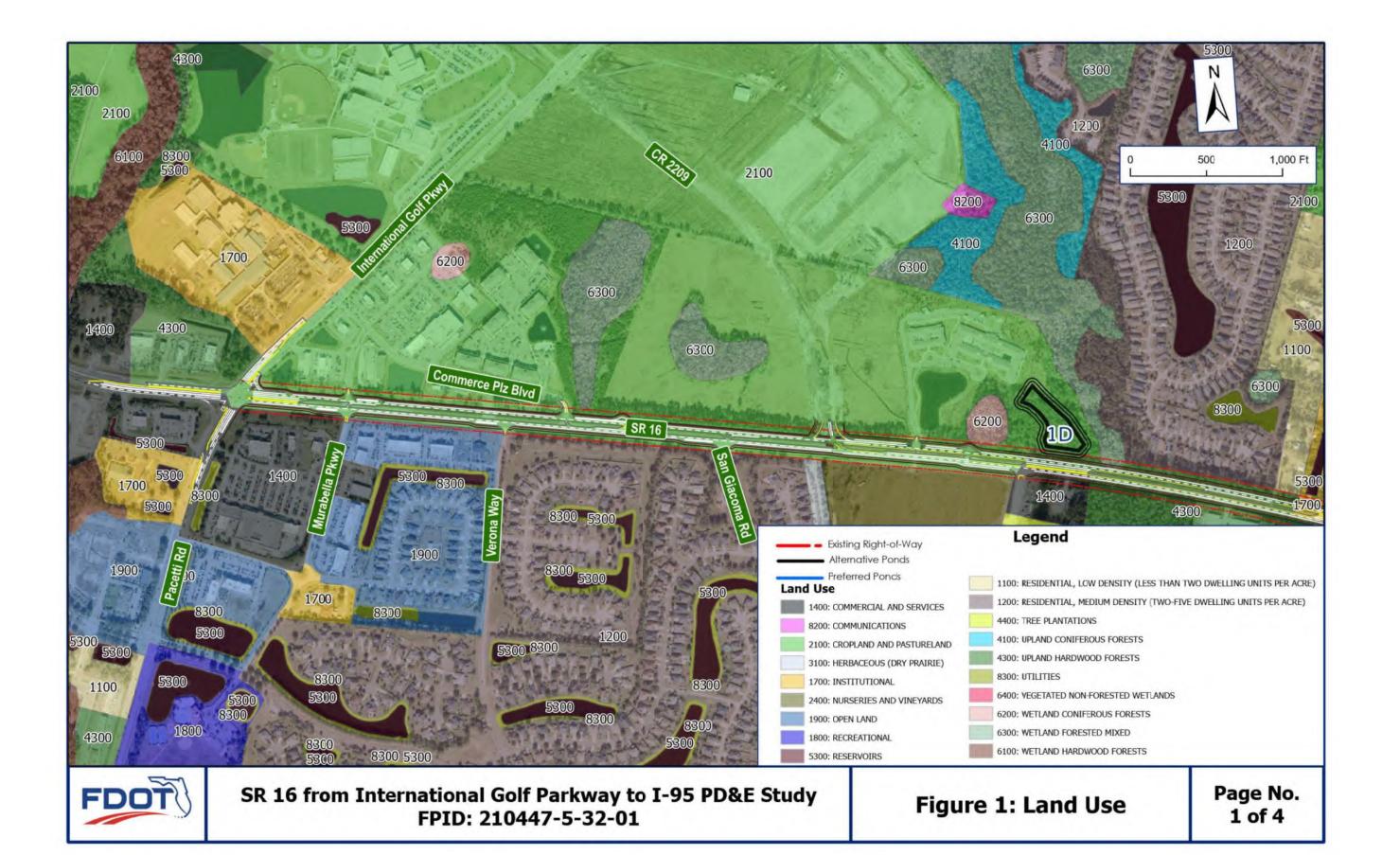
Ponds 2C, 3C, 4C, and 5C were selected as the preferred alternative due to the minimal environmental impacts and cost savings. The owners of the respective parcels have reached out to the Department for a potential sale.

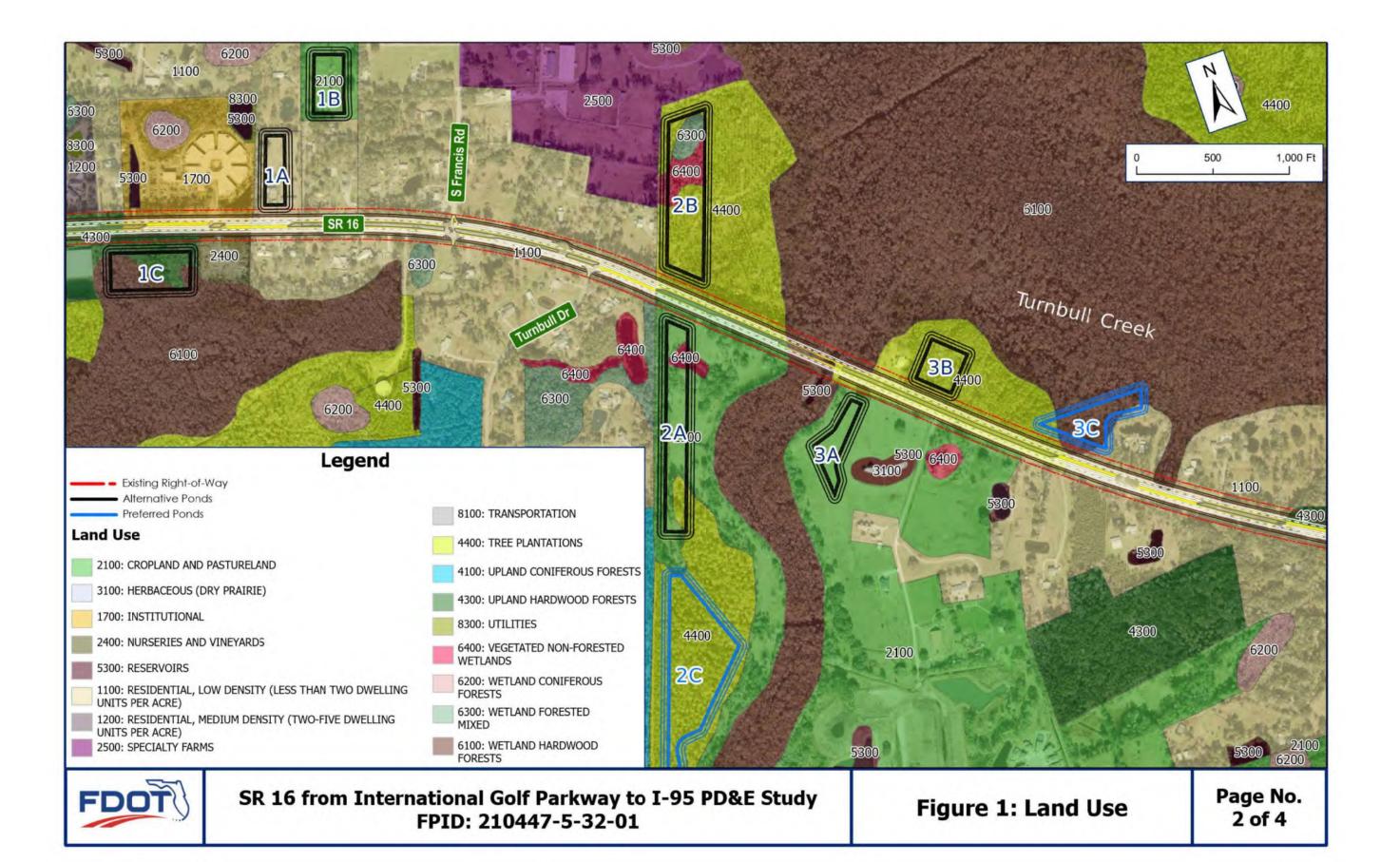
Pond alternatives for Basin 1, Ponds 1A, 1B, 1C, and 1D, were not considered as preferred ponds because of the potential impacts to residential and commercial parcels. Basin 1 was merged with Basin 2 for the drainage analysis. Ponds 2A, 2B, and 2C were increased in size to accommodate both Basins 1 and 2. Pond 2C was also increased in size to offset attenuation requirements for Basin 3, in case treatment credits are available for Basin 3. Ponds 2A and 2B were not chosen as preferred alternatives due to the potential frontage impact to the respective parcel along SR 16.

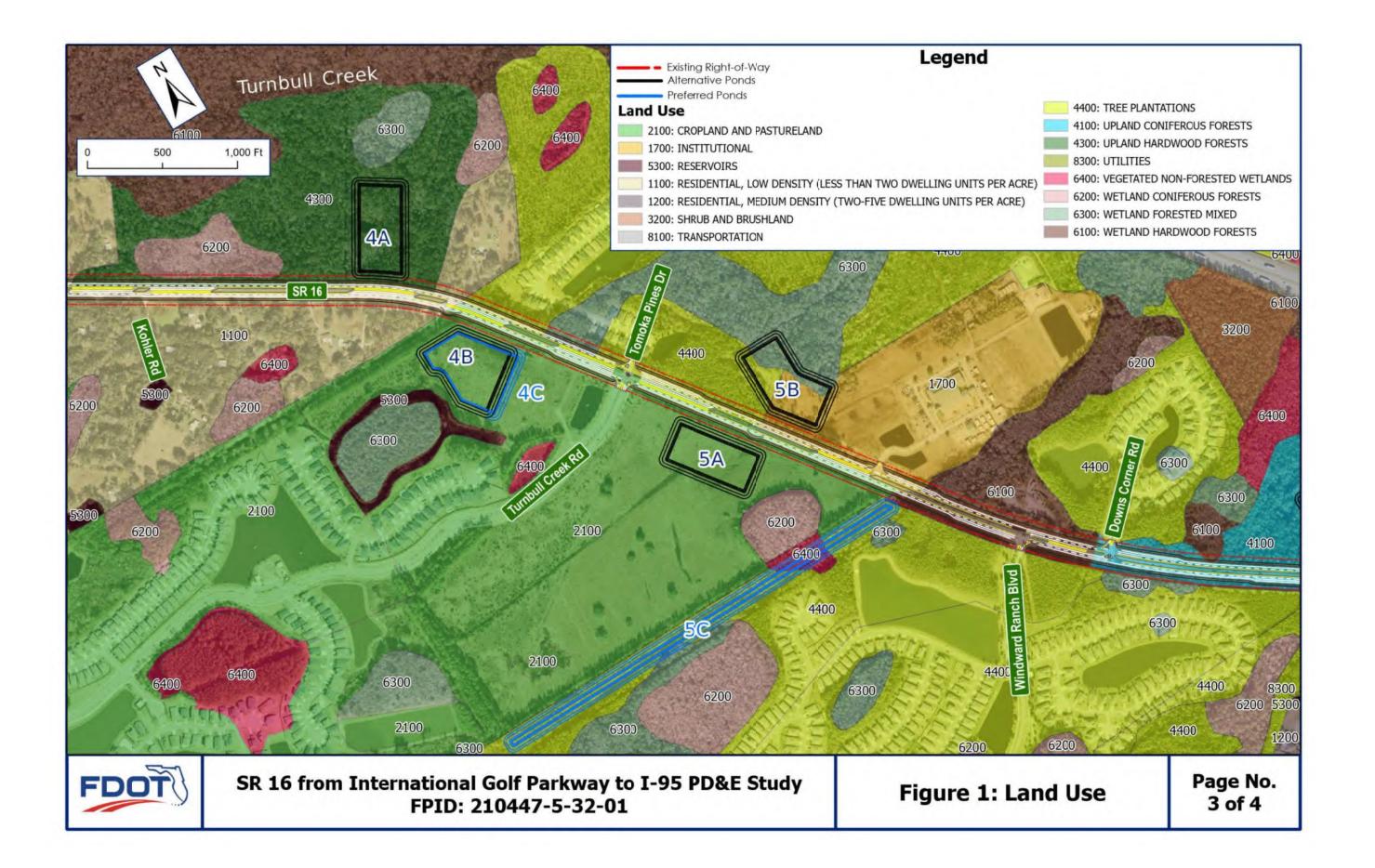
Vacant parcels were selected for pond sites for Basin 3, 4, 5, and 6. Pond 3C was selected as the preferred alternative over Ponds 3A and 3B because of the cost of the parcel and the owner's willingness to sell. Basin 6 was integrated with Basins 4 and 5 for the drainage analysis of Ponds 4C and 5C as a cost saving alternative. The cost and feasibility of conveying Basin 6 was also considered due to the significant distance from Basin 6 to Basins 4 and 5. There is a considerable elevation difference from Basins 5 and 6 to Basin 4, which should facilitate the conveyance of stormwater runoff. The cost for Ponds 4C and 5C was found to be less than the cost of individual ponds and conveyance systems for Basins 4, 5, and 6.

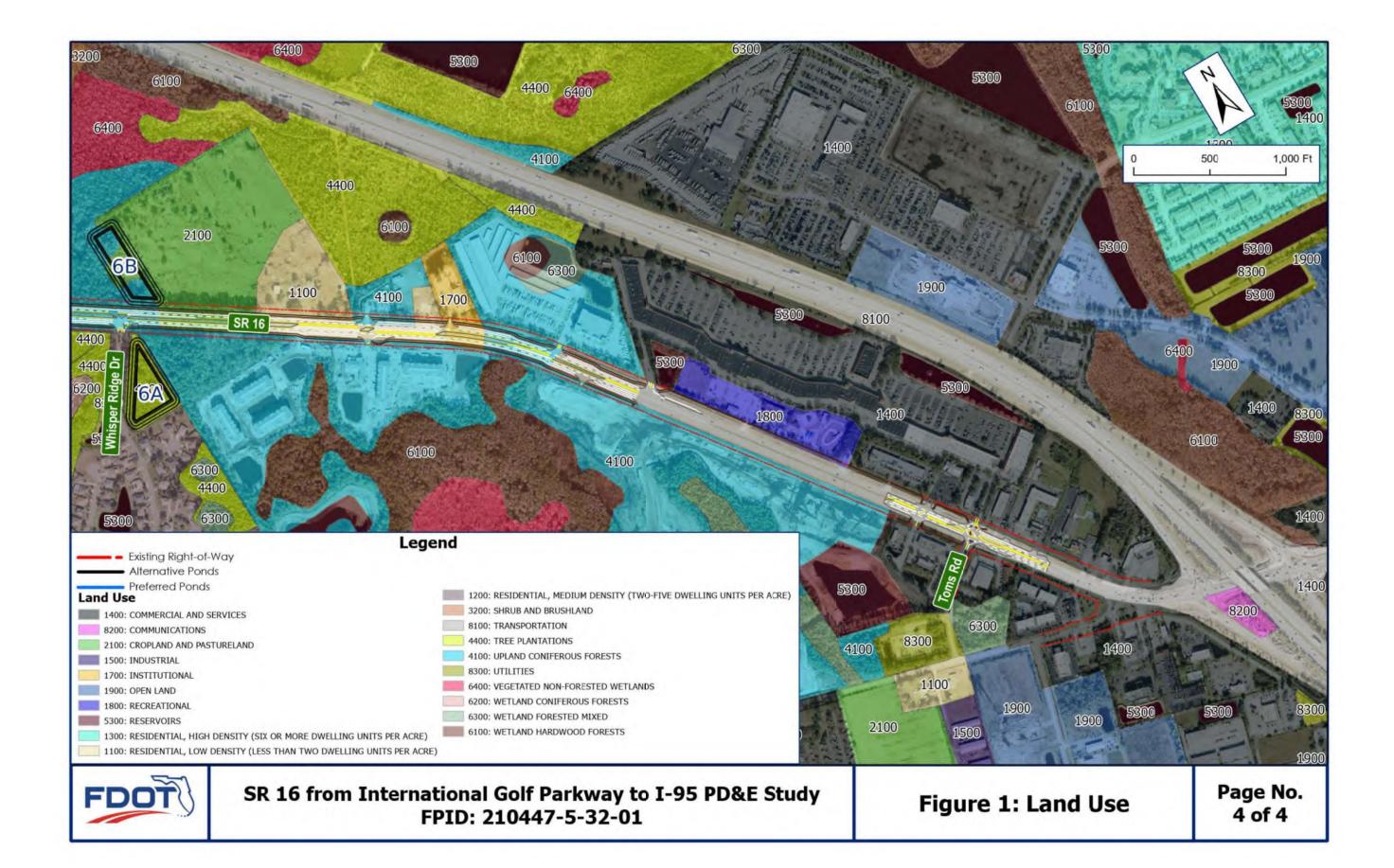
6.0 Conclusions

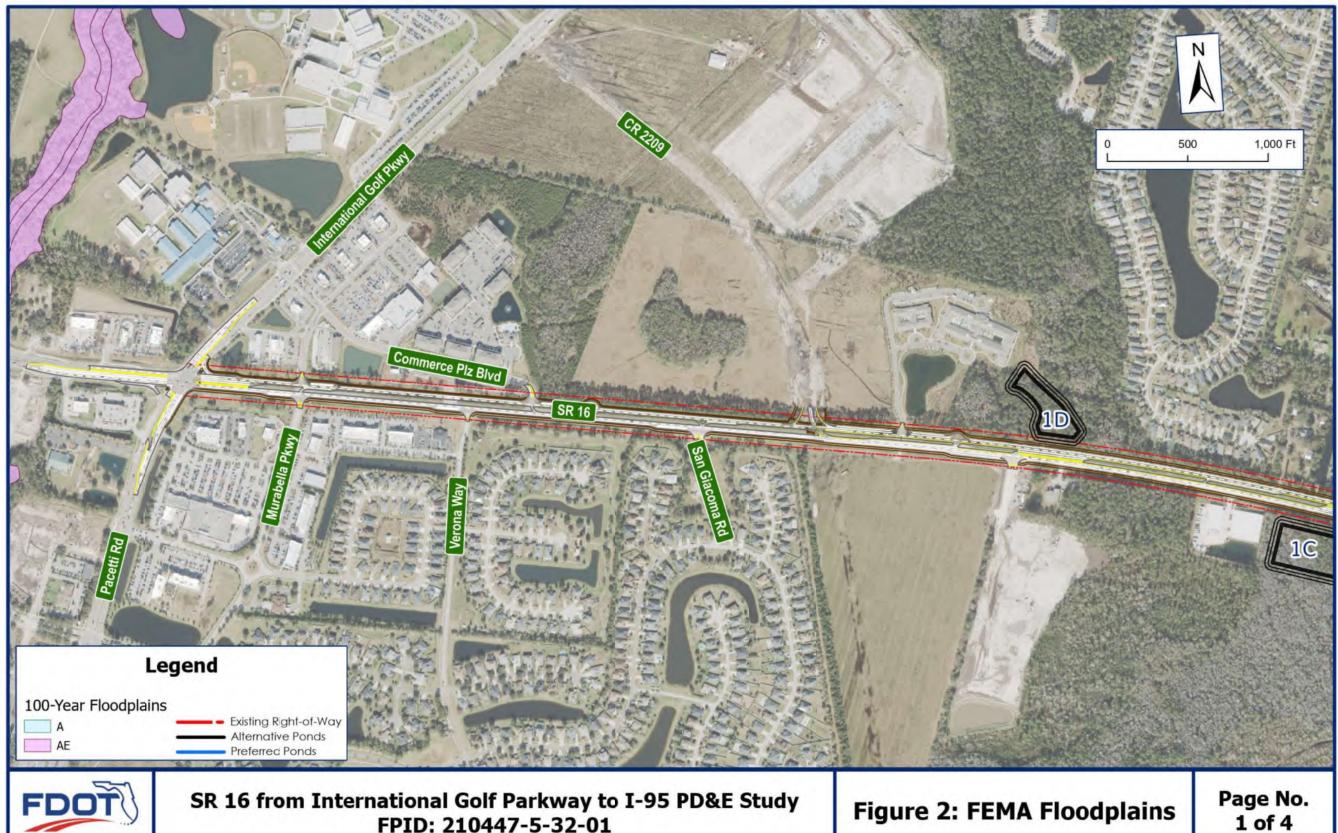
As part of this analysis, pond site alternatives were analyzed. The previous sections of this report and the evaluation matrix included in **Appendix E – Pond Site Evaluation Matrix** summarize the results of the analysis. Ponds 2C, 3C, 4C, and 5C were selected as the preferred alternatives.

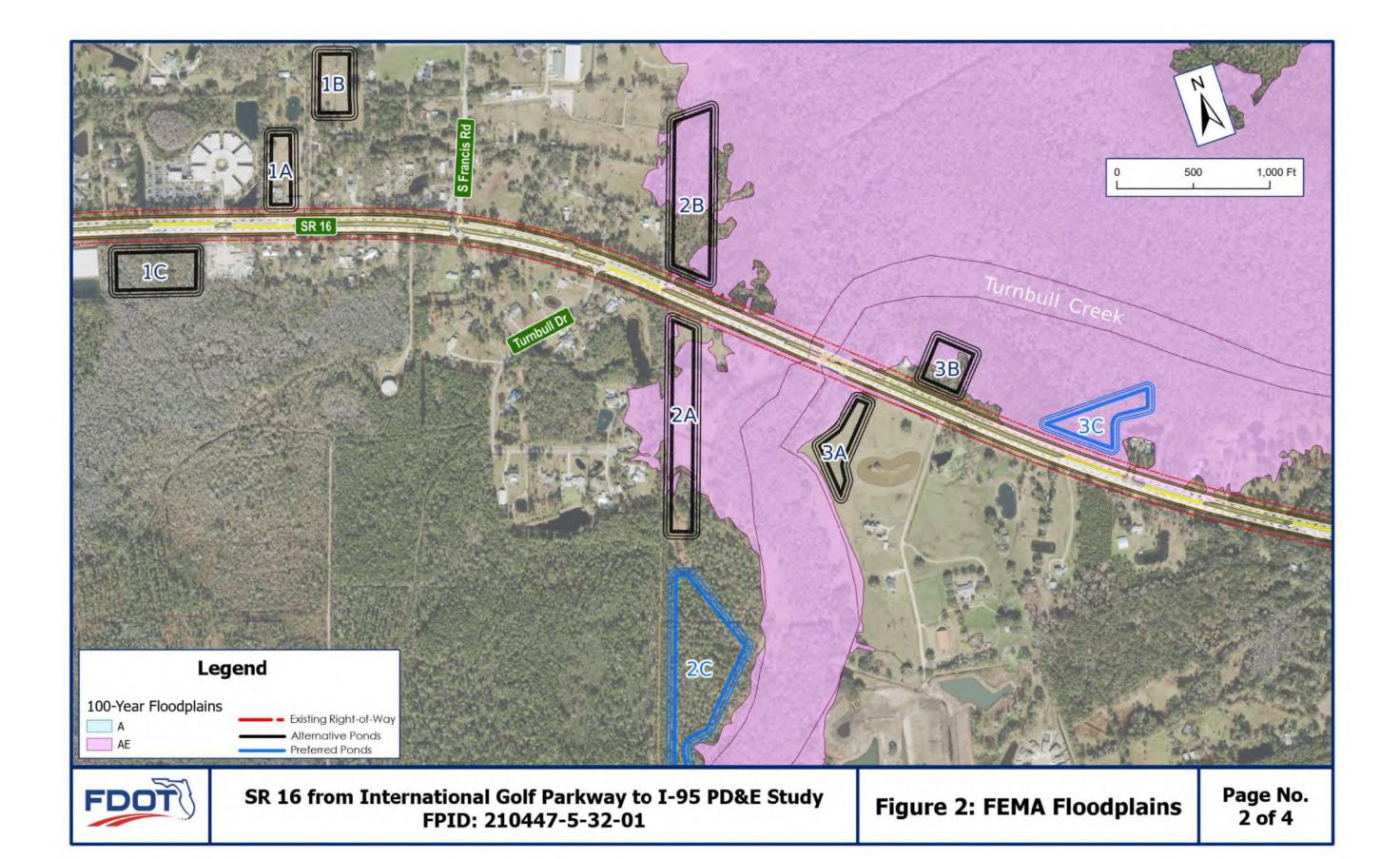

The information contained herein is preliminary and will need to be refined once this project goes into final design. Additional analysis will be required as the design progresses and refined geotechnical and survey information is obtained.

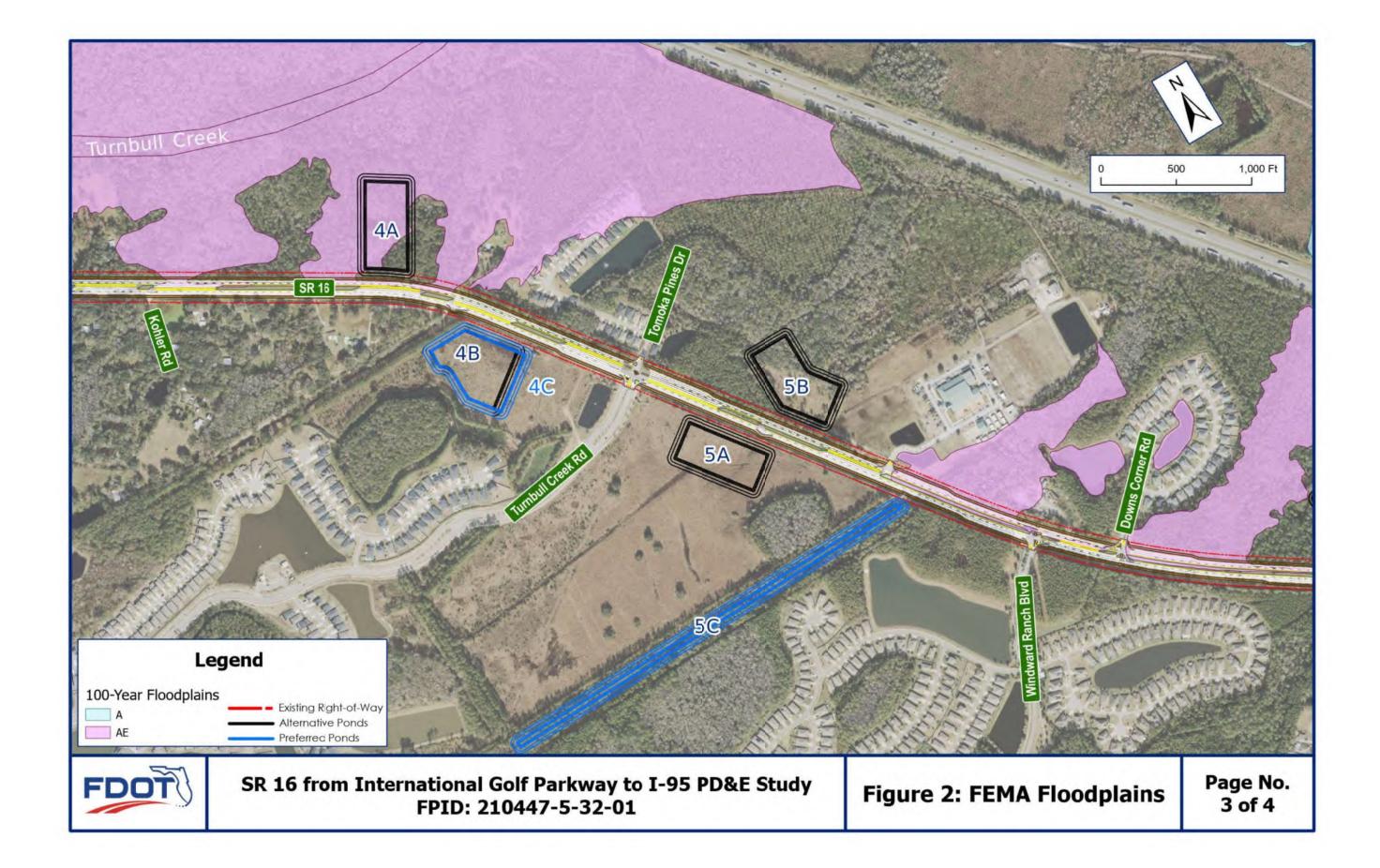

Appendix A – Figures

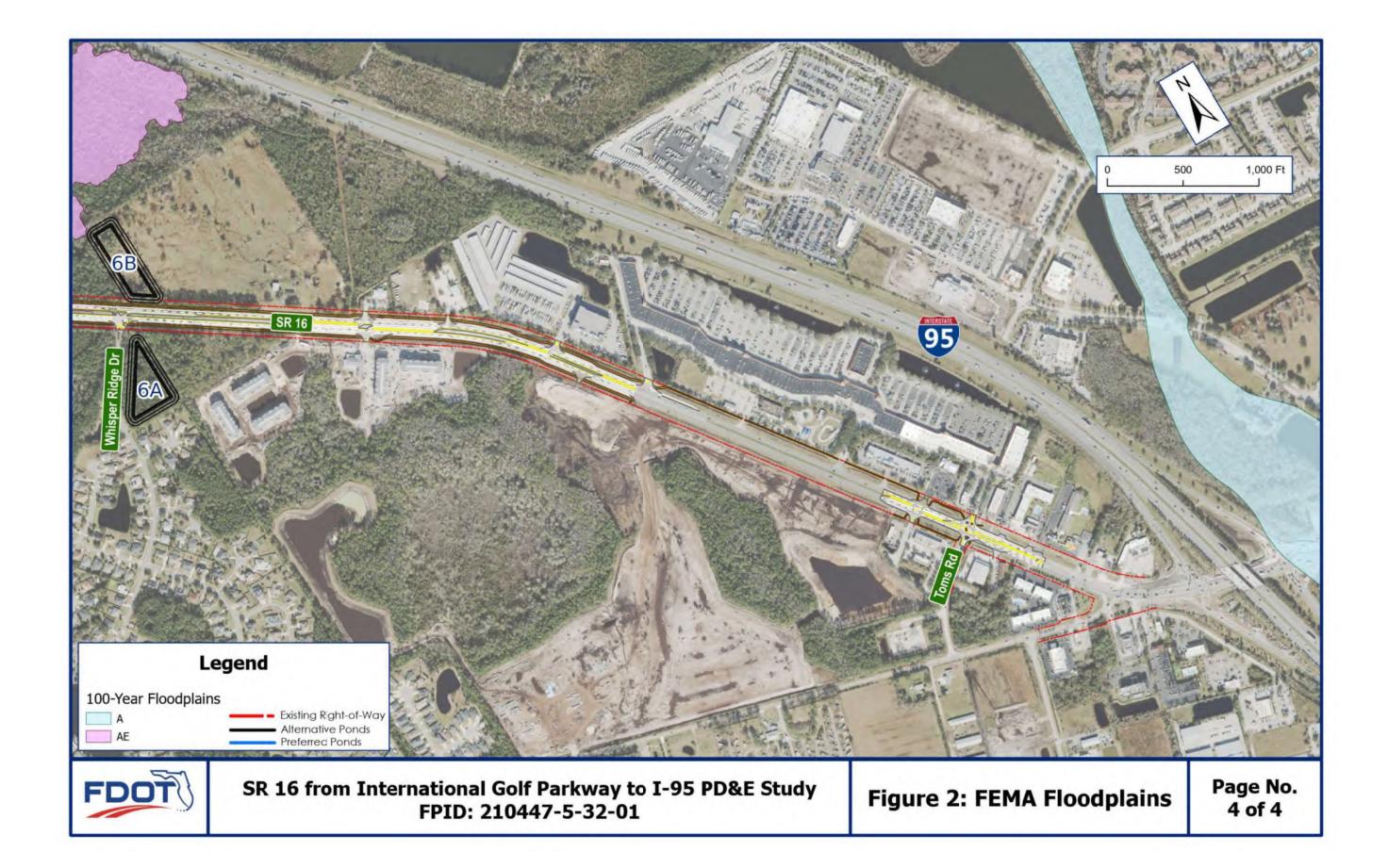

Figure 1: Land Use

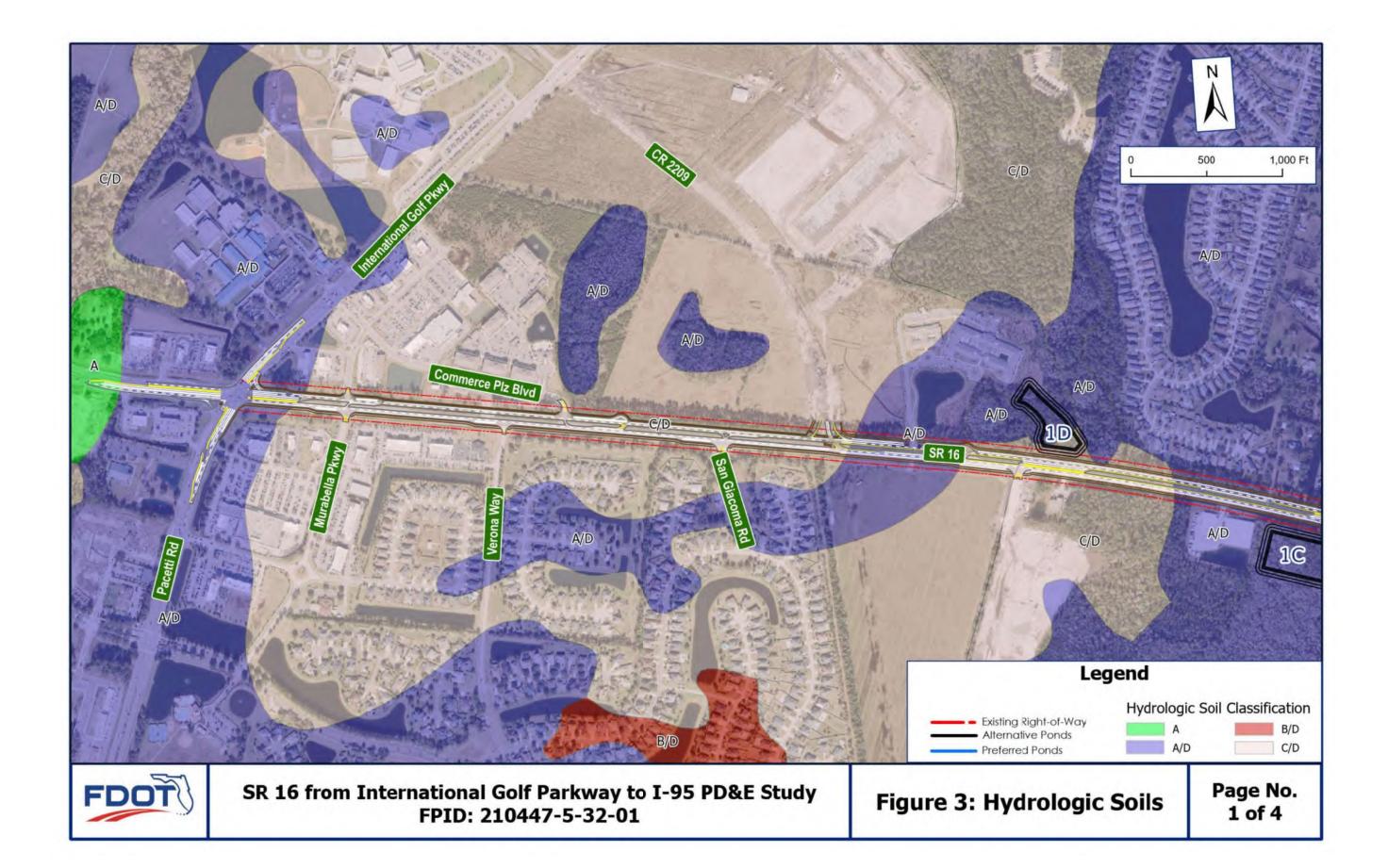

Figure 2: FEMA Floodplains

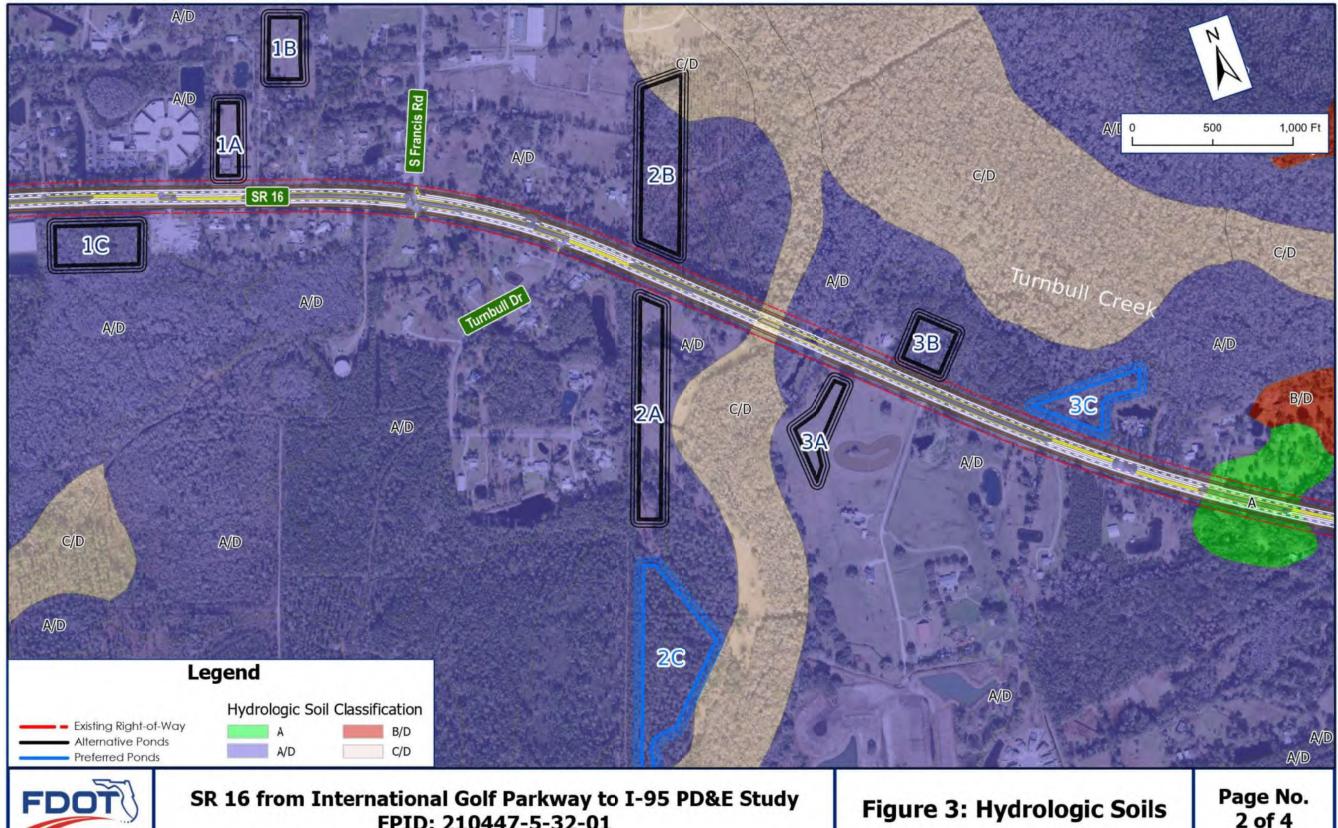

Figure 3: Hydrologic Soils

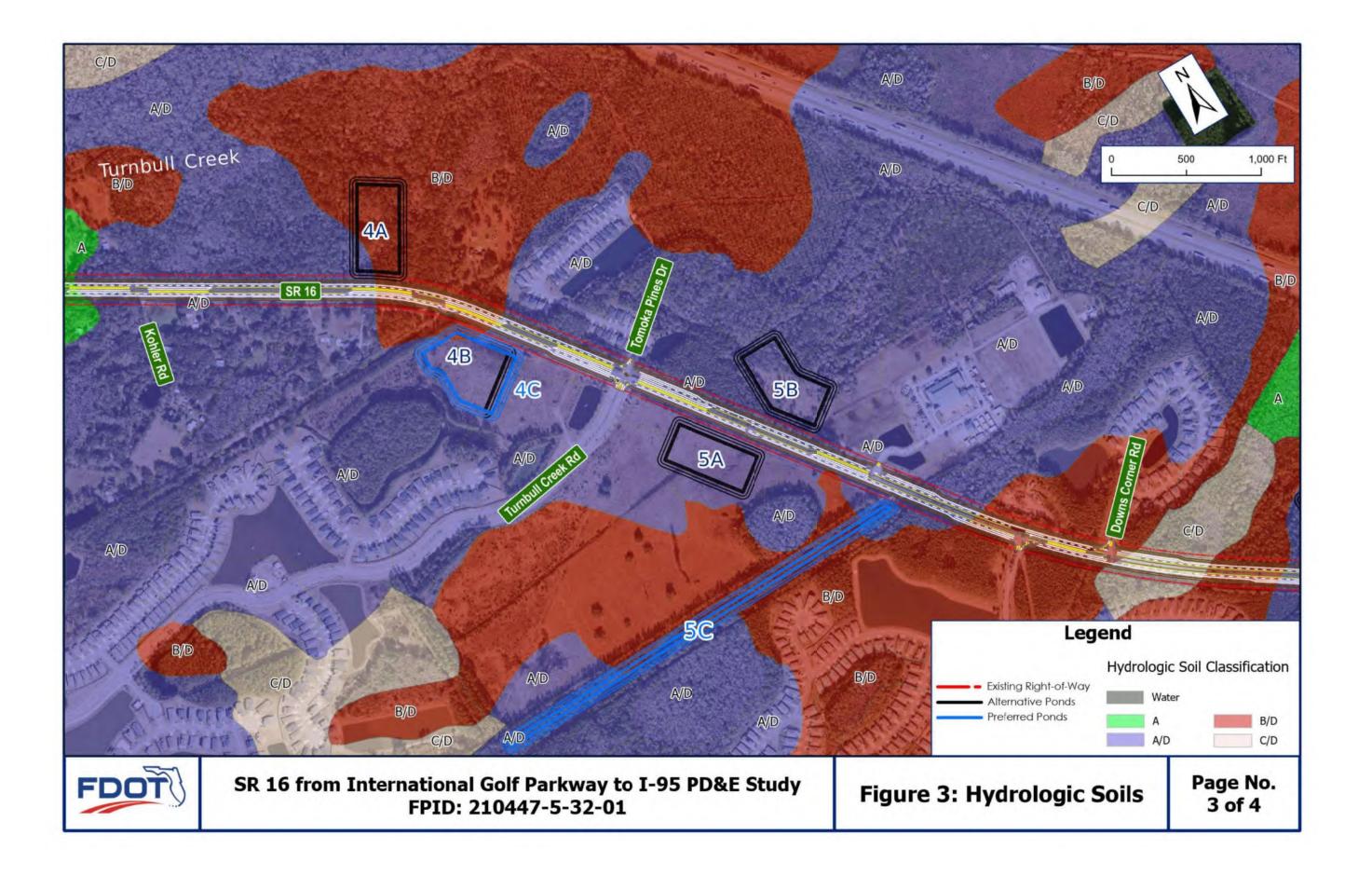


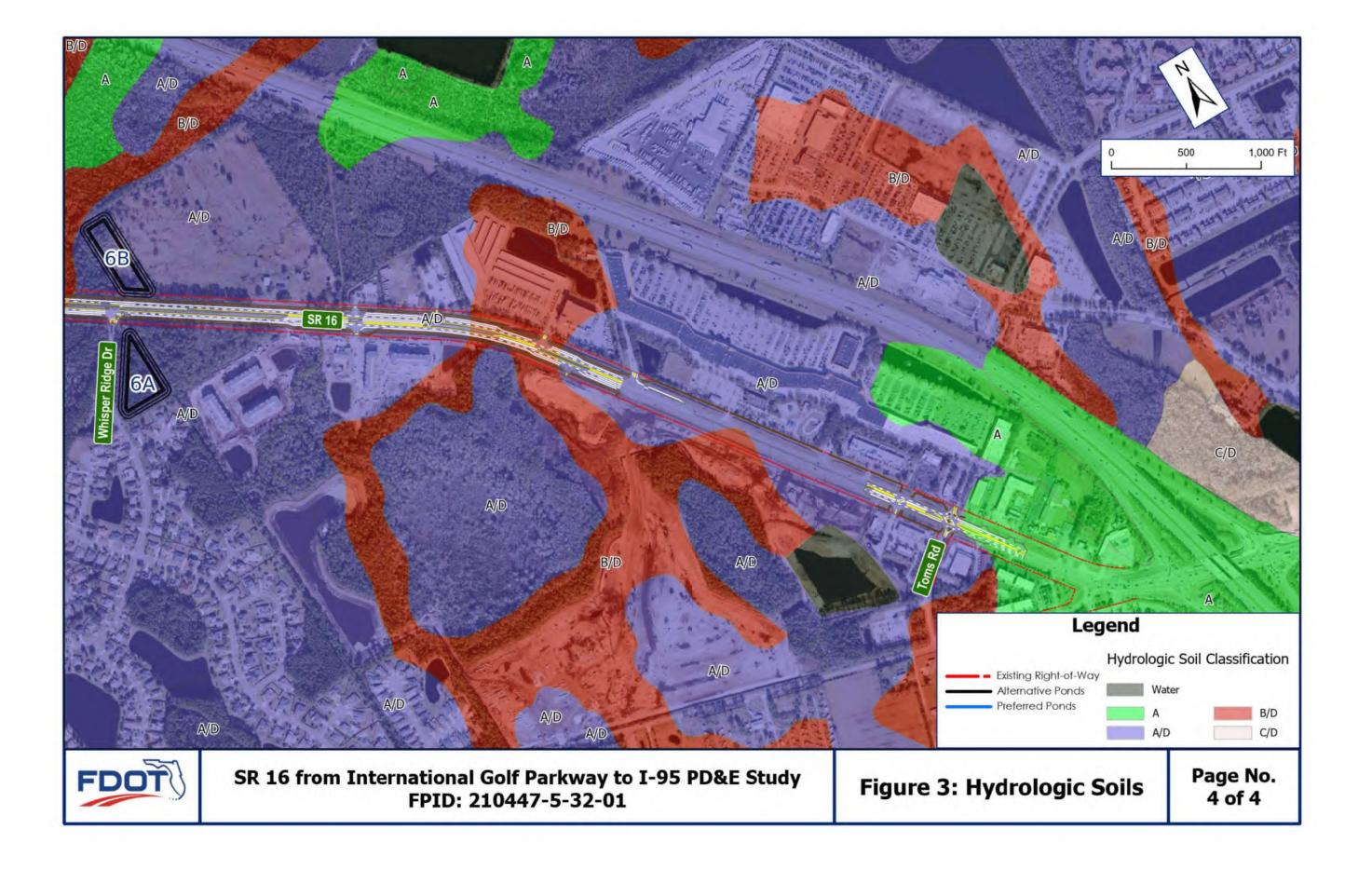



SR 16 from International Golf Parkway to I-95 PD&E Study FPID: 210447-5-32-01


Figure 2: FEMA Floodplains


Page No. 1 of 4

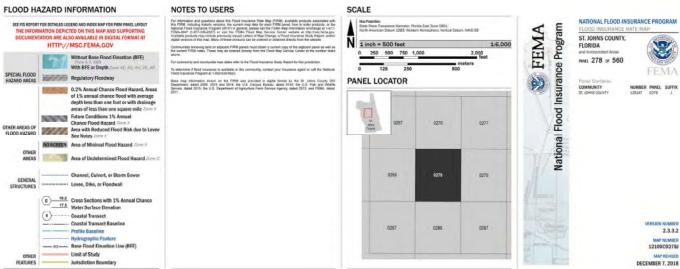


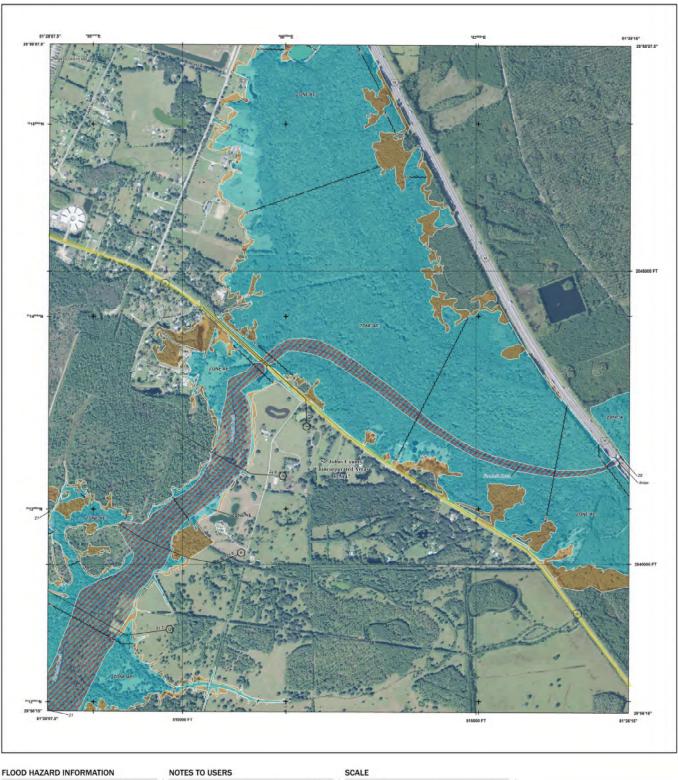


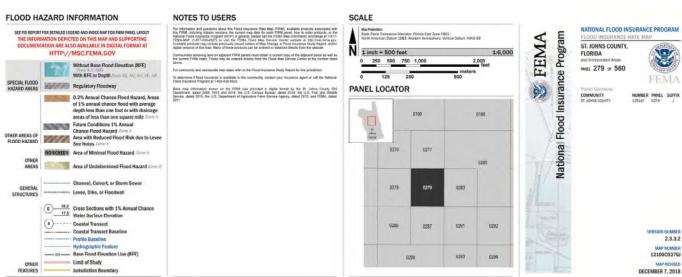
FPID: 210447-5-32-01

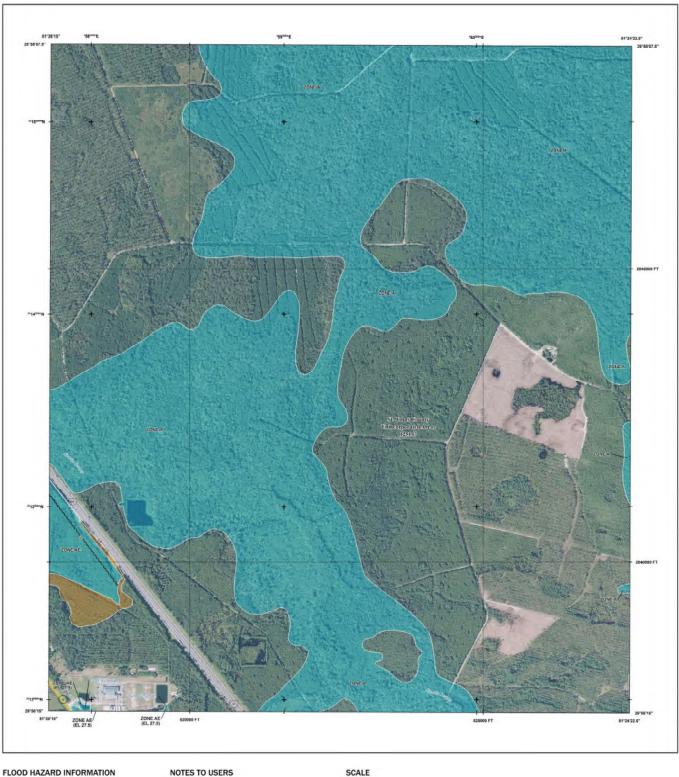
Figure 3: Hydrologic Soils

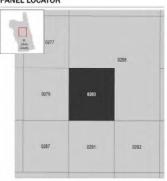
2 of 4






Appendix B – FEMA FIRM Panels

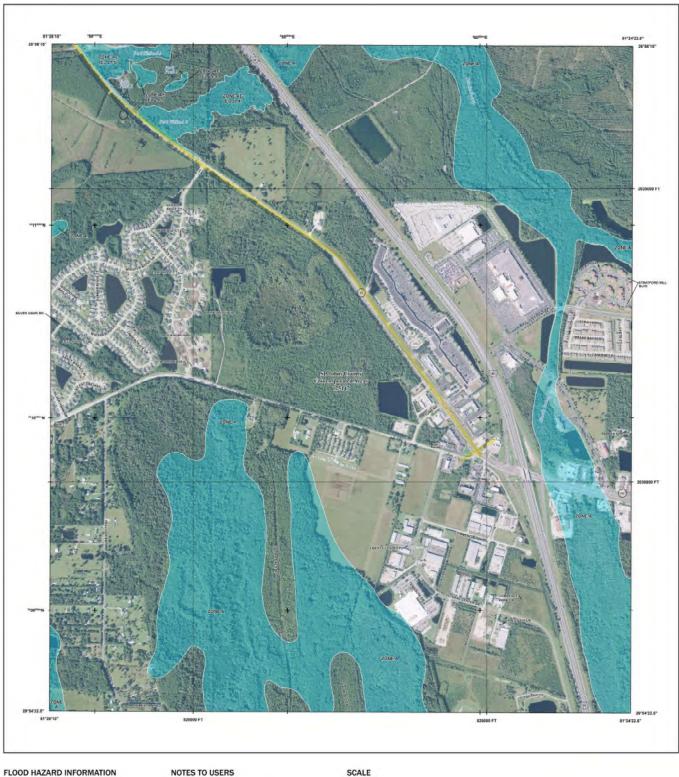




NOTES TO USERS

Sase map information shows an the FRRM was provided in digital horner by the St. Juhne County GTS Department dated 2009 2013 and 2014; the U.S. Census Bursau, dated 2014; the U.S. Flat and Widdle Service dated 2015, the U.S. Department of Agriculture Farm Service Agency, dated 2013, and FEMA, dated 2011.

SCALE

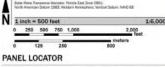

NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP National Flood Insurance Program ST. JOHNS COUNTY, FLORIDA

MNEL 283 or 560

FEMA

FEMA

MAP NUMBER 12109C0283J MAP REVISED DECEMBER 7, 2018



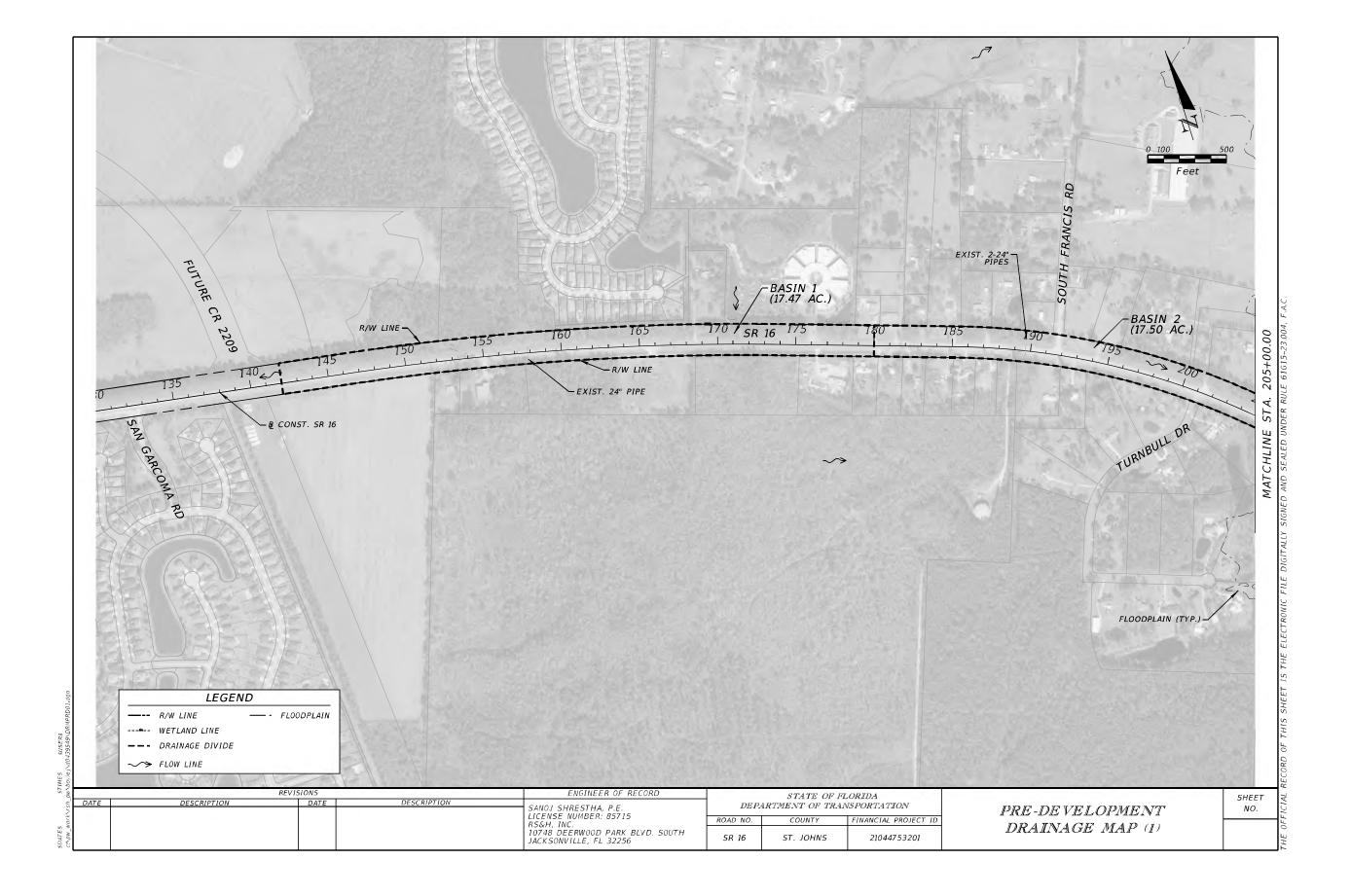
NOTES TO USERS

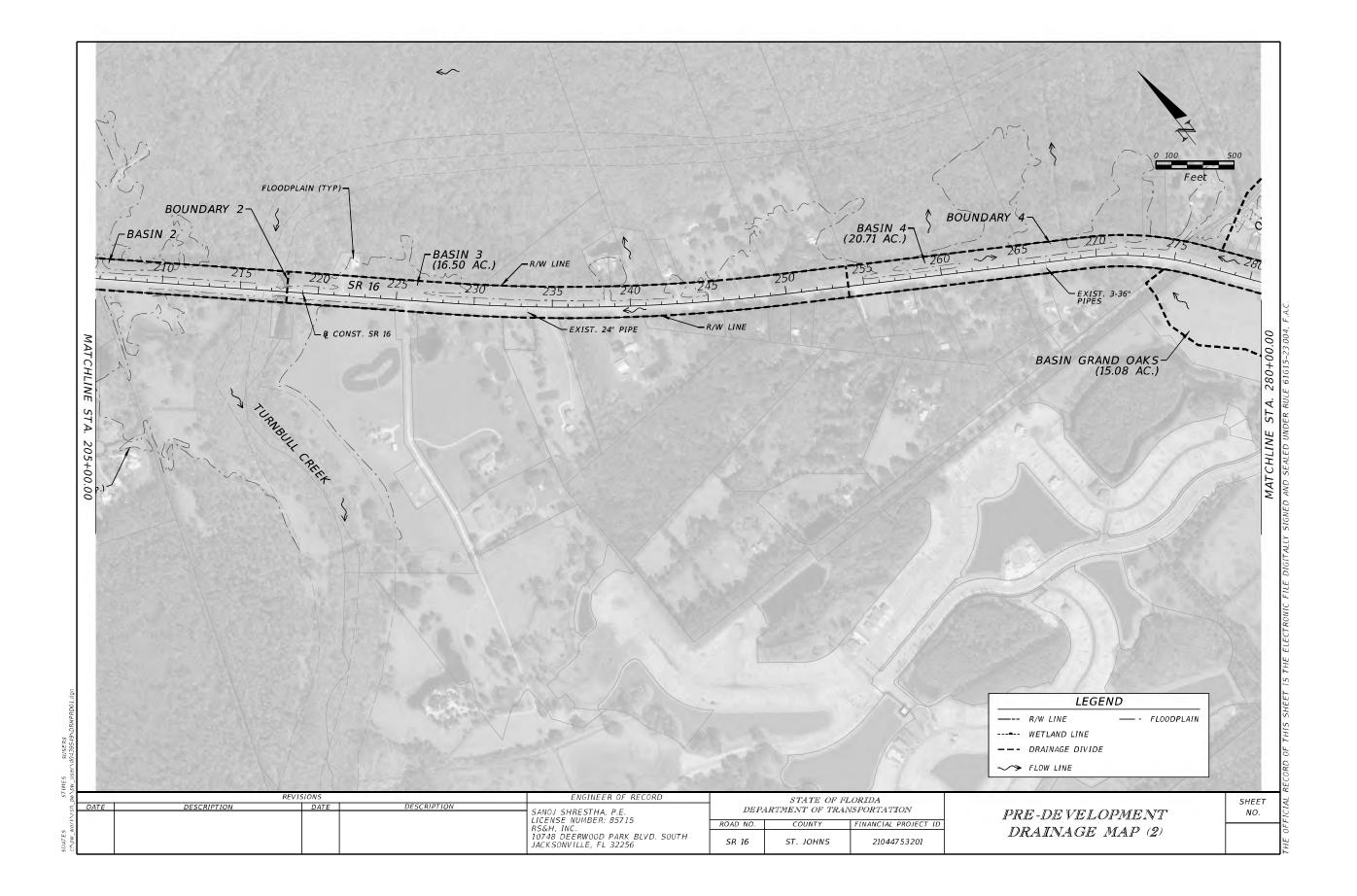
Sace map information shows an the FRRM was provided in digital horset by the St. Jahnes County GTD Department dated 2009, 2013 and 2014; the U.S. Celebras Bursas, dated 2014; the U.S. Fish and Wildfield Service, dated 2015, the U.S. Department of Agriculture Farm Service Agency, dated 2013, and FEMA, dated 2011.

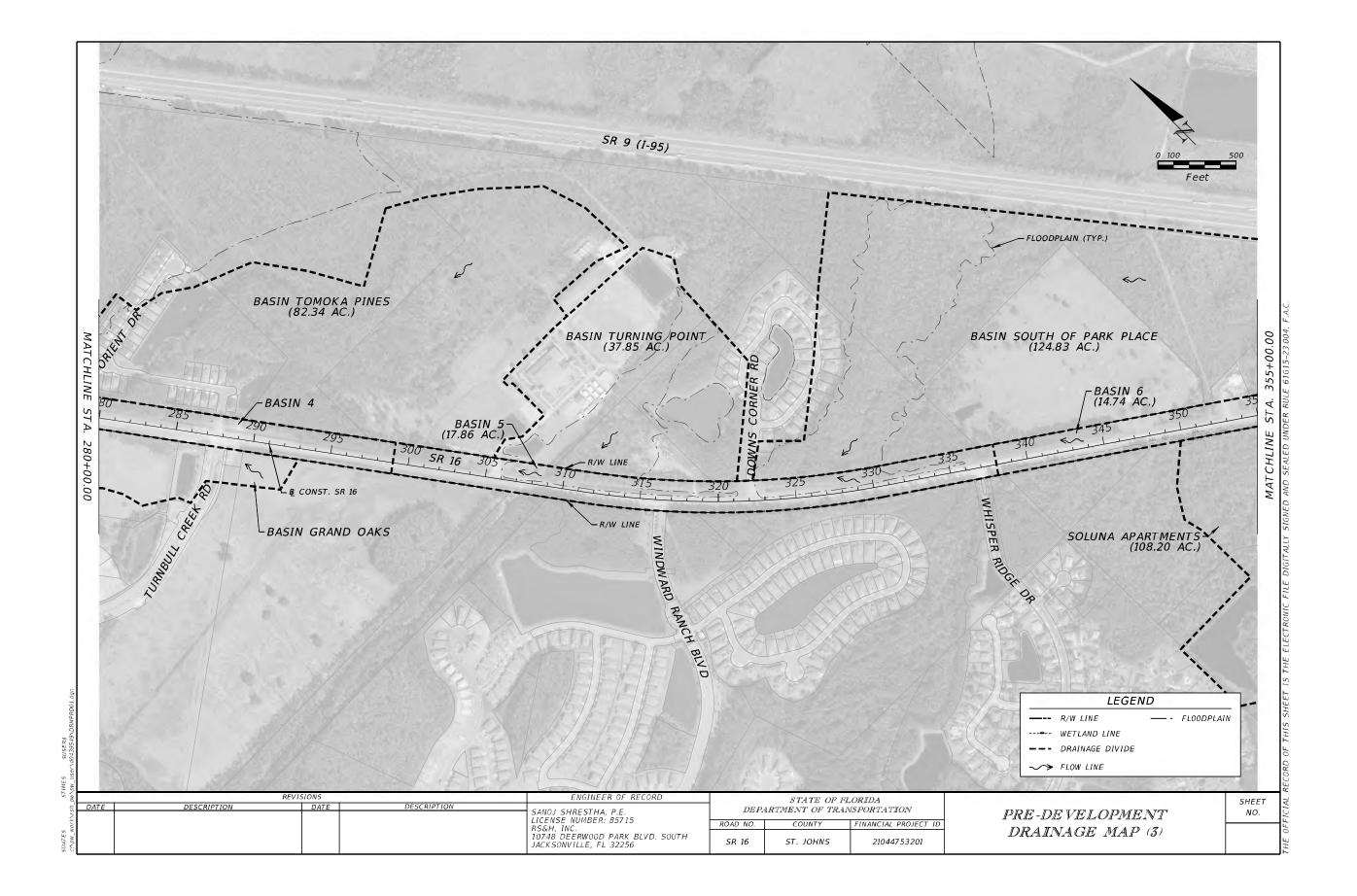
SCALE

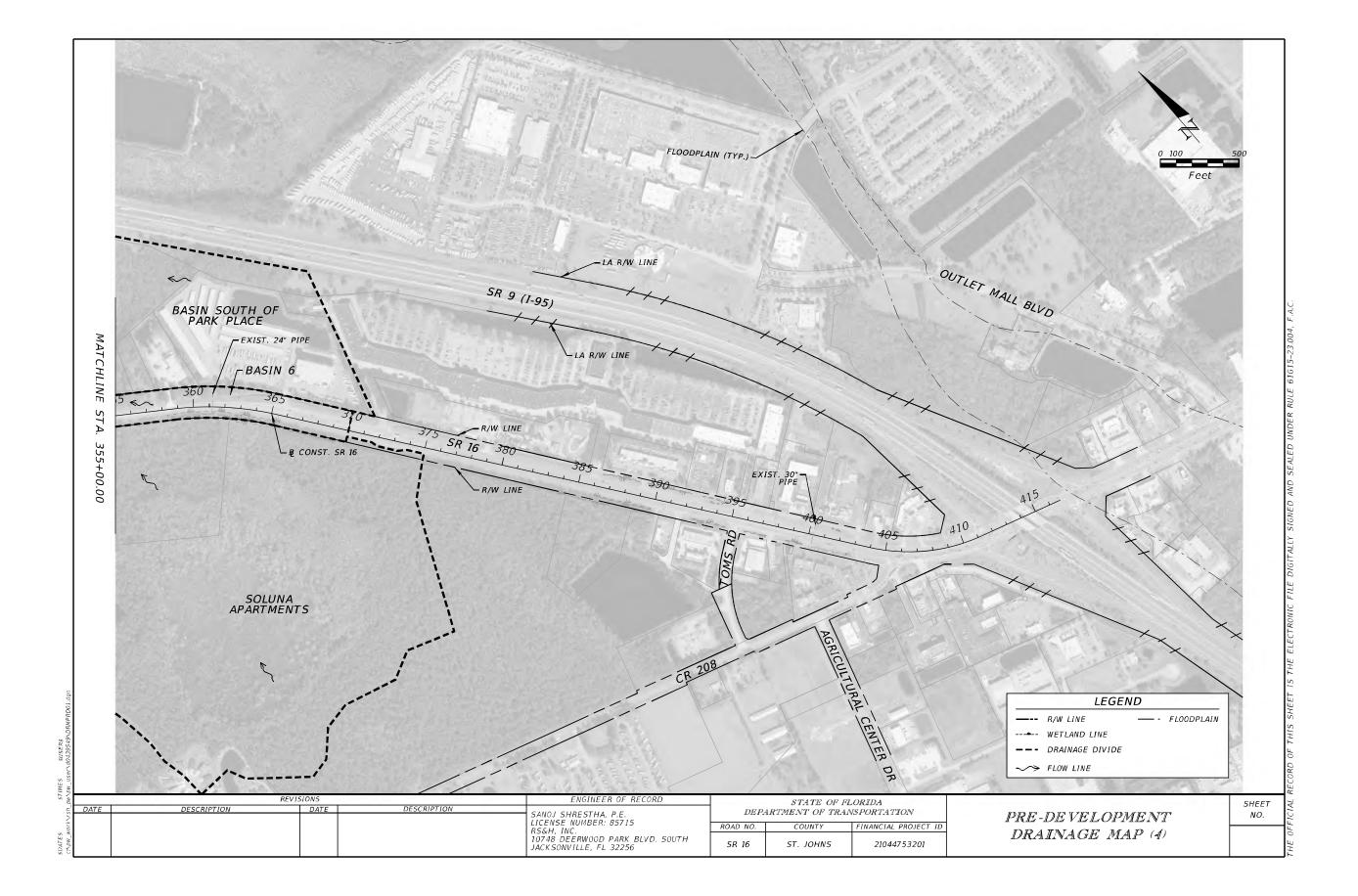
NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

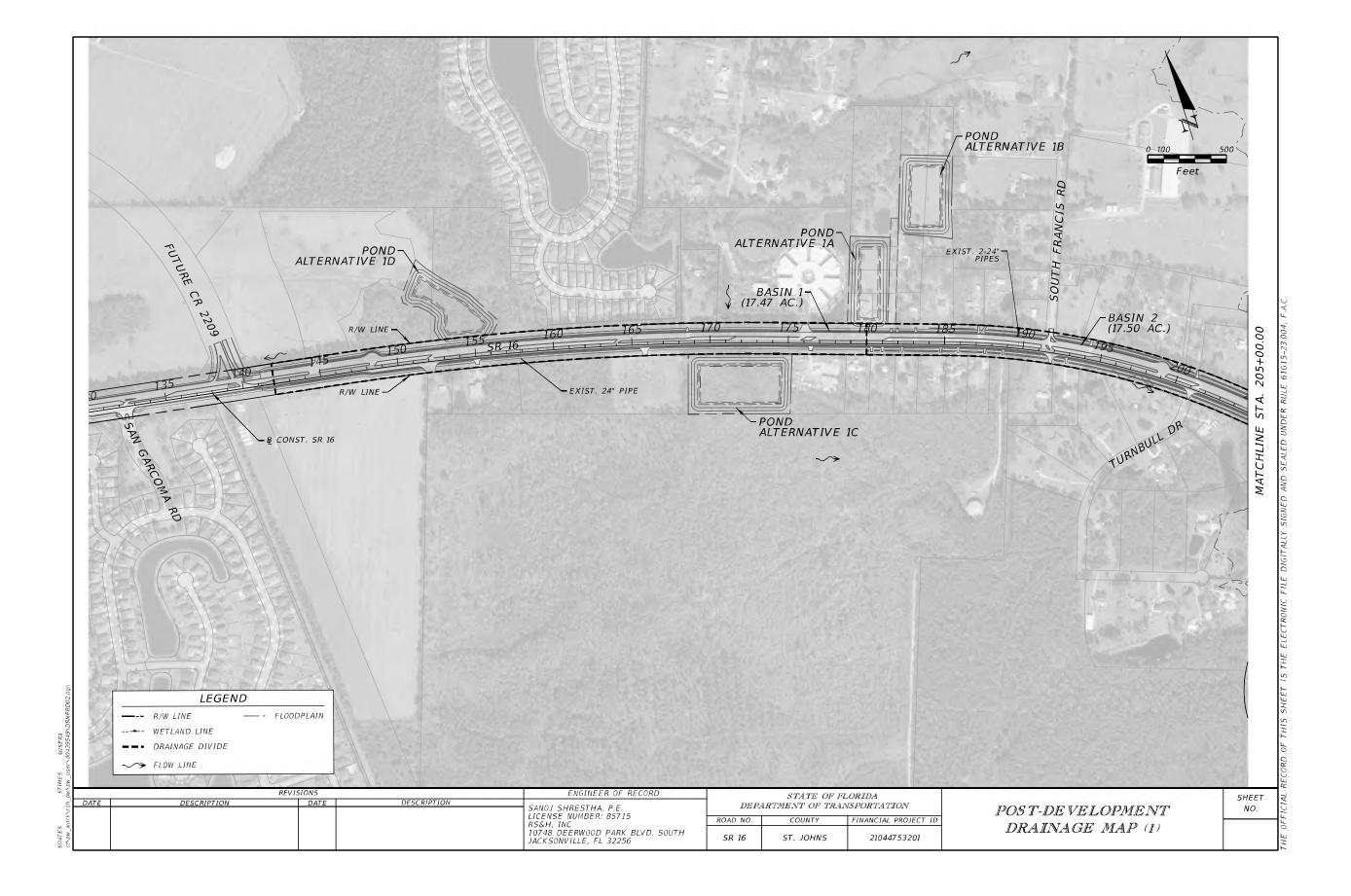
ST. JOHNS COUNTY, FLORIDA MNEL 291 or 560

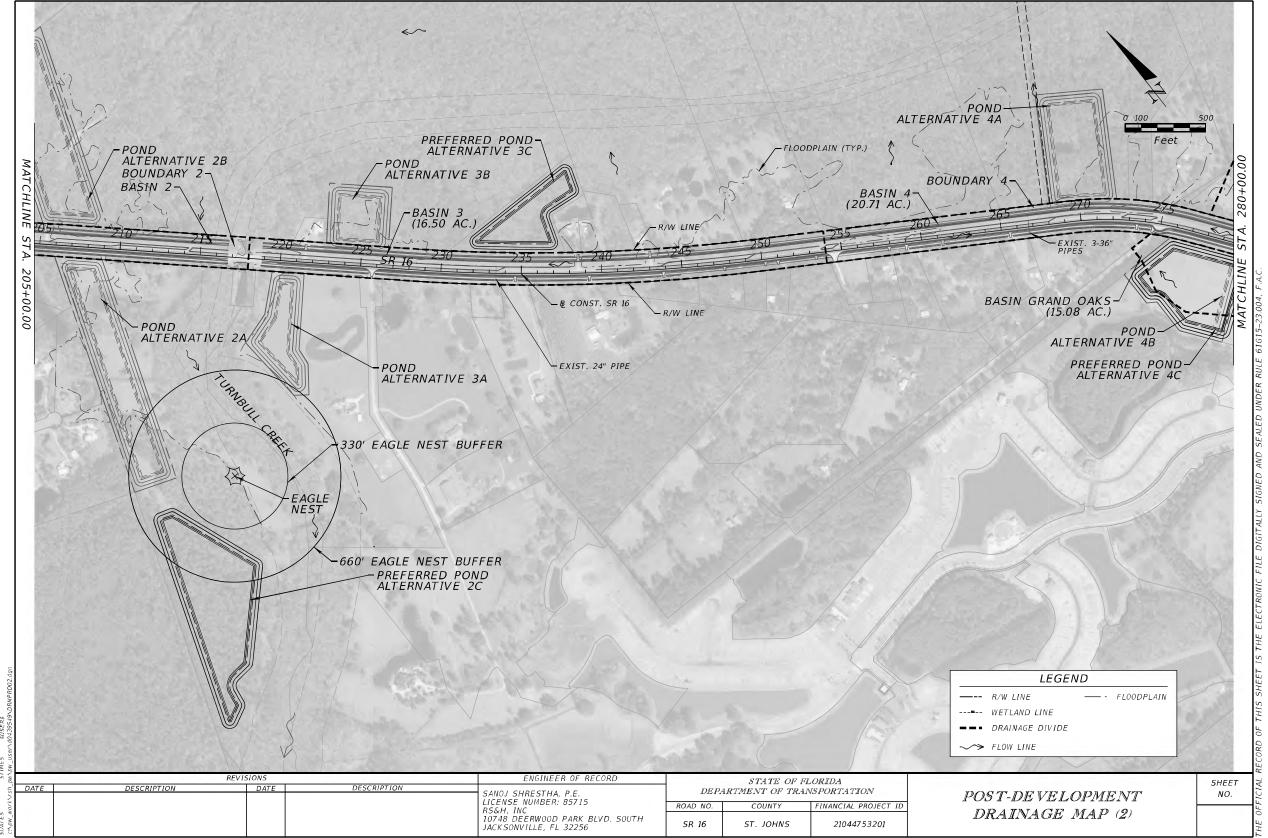

* FEMA

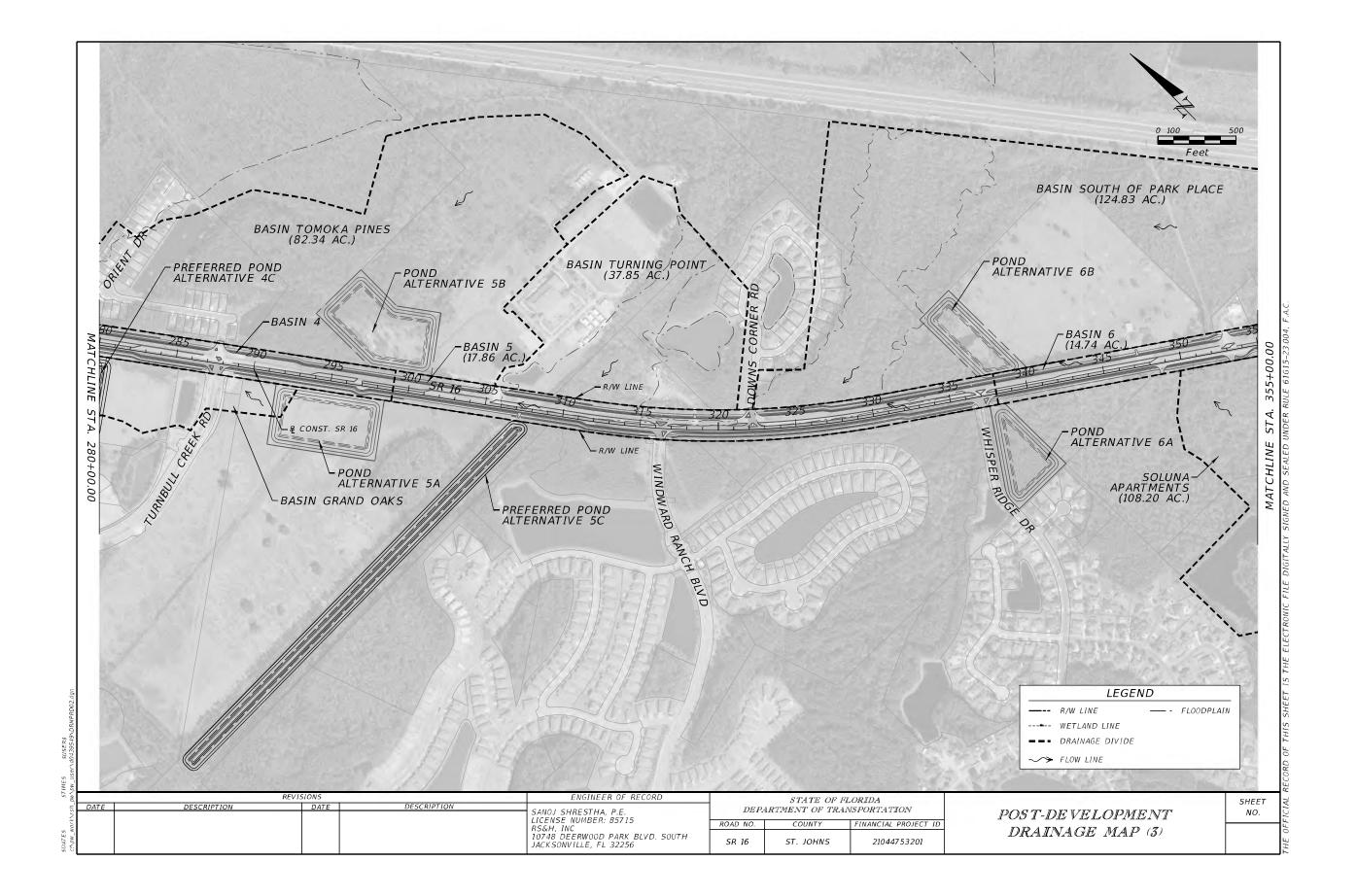

National Flood Insurance Program

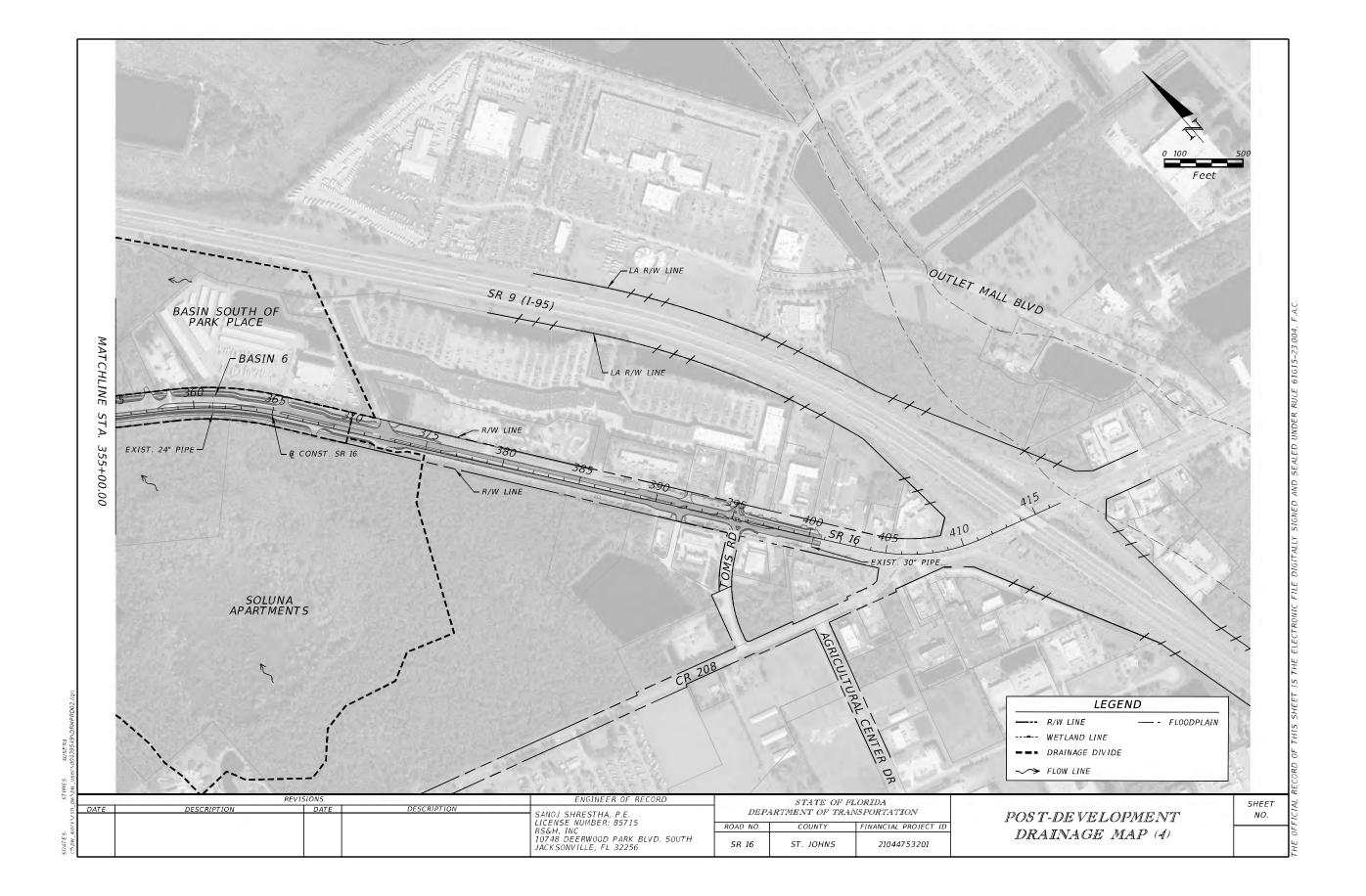

NUMBER PANEL SUFFIX


MAP NUMBER 12109C0291J MAP REVISED DECEMBER 7, 2018


Appendix C – Drainage Maps







Appendix D – Pond Sizing Calculations

Time of Concentration Calculations **Treatment Calculations Routing Calculations**

Sasin No: Pre-Basin 1.8.2 Condition: Pre-Sevel priners			SR 16				Comp. By: Date: Chk. By: Job No:	SS 1/15/2025 VV 21044753201
Sheet Flow [TR-55 equation 3-3] AB				Time	of Concent	ration Cal	lculations	
Surface Description Simoth Sundary Surface Sundary Sunda								
Surface Description Surface Surfaces S	Sheet Flow [TR	R-55 equation 3-	3]					
Surface Description Surface Surfaces S	_	•	AB	7				
Mannings Roughness coeff. n 0.011 1 0.41 1 1 1 1 1 1 1 1 1	Surface Descriptio	n	Smooth	1	Bermuda		\neg	
In	Manning's Roughr	ness coeff., n						
Elevation 1, E ₁				ft		t	ft	ft
Elevation 2, E ₂ 27.00		fall, P ₂		-				
Land Slope, s = (E, -E ₂)/L				_				
Ti = 0.007 * (n * L) * S / (P) * S * S * S * O . 0.00		- F-)/I		-				
Shallow Concentrated Flow [TR-55 figure 3-1]	Tt = 0.007 * /p * L	-1 - L2) / L \0.8 / (D \0.5 * \cdot 0.4\		-				
Shallow Concentrated Flow [TR-55 figure 3-1]	11 - 0.007 (II L)	, , (F2 S)		-1			—— '" ₊	
Surface Description		'		-				
Front Slope, s = (E ₁ - E ₂) / L]				
CD		on		.		. —	—— <u> </u> , —	
Revalue of Concentration Front Slope, s = (E ₁ - E ₂) / L truth trut				-				
Watercourse Slope, s = (E ₁ - E ₂) / L				_				
Average Velocity, V T ₁ = L / (3600 ° V) T ₂ = L / (3600 ° V) T ₃ = L / (3600 ° V) T ₄ = L / (3600 ° V) T ₅ = L / (3600 ° V) T ₇ = L / (3600 ° V) T ₈ = L / (3600 ° V) T ₈ = L / (3600 ° V) T ₈ = L / (3600 ° V) T ₉ = Diameter, D T ₁ = Diameter, D T ₂ = Diameter, D T ₃ = Diameter, D T ₄ = Diameter, D T ₅ = Diameter, D T ₆ = Diameter, D T ₇ = L / (3600 ° V) T ₈ = L / (3600 ° V) T ₈ = L / (3600 ° V) T ₉ = Diameter, D T ₁ = Diameter, D T ₁ = Diameter, D T ₂ = Diameter, D T ₃ = Diameter, D T ₄ = Diameter, D T ₅ = Diameter, D T ₇ = Diameter, D T ₈ = Diameter, D T ₉ = Dia		e s = (F F ₂) / l		-				
CD Channel Front Slope, s ₁ 6.00 11 11 11 11 11 11 11	viateroodroc olop	0,0 (-1 -2)						
CD Channel Front Slope, s₁ 6.00 11 11 11 11 11 11 11	Average Velocity	V		-				
CD Channel Front Slope, s, 6.00 1 11 11 11 11 11 11		V		ft/s		īt/s	ft/s	ft/s
CD Channel		V		ft/s hr		īt/s	ft/s	ft/s hr
Front Slope, s ₁ 6,00 11 11 11 11 11 11 11		V		ft/s hr		īt/s	ft/s	ft/s hr
Front Slope, s ₁ 6,00 11 11 11 11 11 11 11	T _t = L / (3600 * V)		uation 3-4]	ft/s hr		īt/s	ft/s	ft/s hr
Front Slope, s ₁ 6.00 :1 :1 :1 :1 :1 :1 :1	T _t = L / (3600 * V)			ft/s hr		īt/s	ft/s	ft/s hr
Open Channel Bottom width, B Back Slope, s ₂ 4,00 :1 :	T _t = L / (3600 * V)		CD	ft/s hr		īt/s	ft/s	ft/s hr
Back Slope, s ₂ 4.00 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel	ft/s hr +		rt/s nr +	ft/s hr +	ft/s hr
Depth, H	T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel 6.00	ft/s hr +		1	ft/s hr +	ft/s hr = 0.0 min
Pipe Diameter, D in in in in in in in sq ft	T _t = L / (3600 * V) Open Channel	Flow [TR-55 eq	CD Channel 6.00 5.00	ft/s hr +		1	ft/s hr +	ft/s hr = 0.0 min
Cross Sectional Flow Area, a 6.44 sq ft sq ft sq ft sq ft sq ft ft <th< td=""><td>T_t = L / (3600 * V) Open Channel</td><td>Front Slope, s₁ Bottom width, B Back Slope, s₂</td><td>CD Channel 6.00 5.00 4,00</td><td>ft/s hr +</td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>ft/s hr +</td><td>ft/s hr = 0.0 min :1 ft :1</td></th<>	T _t = L / (3600 * V) Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	CD Channel 6.00 5.00 4,00	ft/s hr +		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr +	ft/s hr = 0.0 min :1 ft :1
Wetted Perimeter, P_w 12.55 ft	Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H	CD Channel 6.00 5.00 4,00	ft/s hr +		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr +	ft/s hr = 0.0 min :1 ft :1 ft :1
Hydraulic radius, $r = a / P_w$	Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD Channel 6.00 5.00 4.00 0.74	ft/s hr +		tts	ft/s hr +	ft/s hr = 0.0 min :1 ft :1 ft in
Flow Length, L 7300 ft	Open Channel Open Channel Open Channel Pipe Cross Sectional Fl	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a	CD Channel 6.00 5.00 4.00 0.74	ft/s hr + :1 ft :1 ft in sq ft		tts	ft/s hr + :1 ft :1 ft in sq ft	ft/s hr = 0.0 min :1 ft :1 ft in sq ft
Elevation 2, E ₂	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55	ft/s hr + :1 ft :1 ft in sqft ft		tts	ft/s hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Channel Slope, s = (E ₁ - E ₂) / L	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51	ft/s hr + :1 ft :1 ft in sq ft ft ft		tts	ft/s hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Manning's Roughness coeff., n	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300	ft/s hr + :1 ft :1 ft in sq ft ft ft ft		tts	ft/s hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, V = 1.49 * r ^{2/3} * s ^{1/2} / 0.68 ft/s ft/s ft/s ft/s ft/s ft/s ft/s ft/s	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00	ft/s hr + :1 ft in sqft ft ft ft		tts 1 1 tt 1 tt n sq ft tt tt tt	ft/s hr + :1 ft in sq ft ft ft ft ft ft	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft
T _t = L / (3600 * V)	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009	ft/s hr + :1 ft in sqft ft ft ft ft ft		tts	ft/s hr +	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft
Total Time of Concentration	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L less coeff., n	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042	ft/s hr + :1 ft :1 ft in sqft ft ft ft ft ft		tys 1 1 ti n sq ft ti ti ti ti ti ti ti ti ti	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft ft ft
Total Time of Concentration	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s: Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L less coeff., n	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68	ft/s hr + :1 ft :1 ft in sq ft		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L less coeff., n	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L less coeff., n	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s: Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L less coeff., n	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Watershed Tc = 184 min	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Watershed Tc = 184 min	Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
<u></u>	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
	Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.74 6.44 12.55 0.51 7300 25.00 18.50 0.0009 0.042 0.68 2.99	ft/s hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ft/s hr + :1 ft :1 ft :1 ft in sqft ft f	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1

SS Comp. By: 1/15/2025 Date: **SR 16** VV Chk. By: 21044753201 Job No: **Time of Concentration Calculations** Basin No: Post-Basin 1 & 2 Condition: Post-Development Sheet Flow [TR-55 equation 3-3] Smooth Bermuda Surface Description surfaces grass Manning's Roughness coeff., n 0.011 0.41 Flow Length, L (should be <= 100 ft) 21 28 Two-yr, 24-hr rainfall, P₂ 4.52 4.52 in Elevation 1, E₁ 28.00 27.00 Elevation 2, E₂ 27,00 25,00 ft Land Slope, $s = (E_1 - E_2) / L$ 0.05 ft/ft 0.07 ft/ft ft/ft ft/ft Tt = $0.007 * (n * L)^{0.8} / (P_2^{0.5} * s^{0.4})$ 0.07 0.00 hr hr hr 0.2 4.0 4.2 min Shallow Concentrated Flow [TR-55 figure 3-1] Surface Description Flow Length, L Elevation 1, E₁ Elevation 2, E₂ Watercourse Slope, $s = (E_1 - E_2) / L$ ft/ft ft/ft ft/ft ft/ft Average Velocity, V ft/s ft/s ft/s ft/s T_t = L / (3600 * V) hr hr hr 0.0 min Open Channel Flow [TR-55 equation 3-4] CD DE EF Channel Pipe Pipe Front Slope, s₁ 6.00 Bottom width, B 5.00 Open Channel Back Slope, s₂ 4.00 Depth, H 0.74 Diameter, D 48.0 Pipe 42.0 in Cross Sectional Flow Area, a 12.57 6.44 sq ft 9.62 sq ft sq ft sq ft Wetted Perimeter, Pw 12.55 11.00 12.57 Hydraulic radius, r = a / P_w 0.51 0.88 1.00 Flow Length, L 3500 1100 2700 Elevation 1, E₁ 25.00 21.00 19.10 Elevation 2, E₂ 22.90 19.10 16.80 ft Channel Slope, $s = (E_1 - E_2) / L$ 0.0009 0.0006 ft/ft 0.0017 ft/ft ft/ft ft/ft Manning's Roughness coeff., n 0.042 0.012 0.012 Average Velocity, $V = 1.49 * r^{2/3} * s^{1/2}$ 3.62 ft/s 0.56 ft/s 4.72 ft/s ft/s $T_t = L / (3600 * V)$ 1.75 ft/s 0.06 ft/s 0.21 ft/s 121.1 104.8 3.9 12.4 min **Total Time of Concentration** Watershed Tc = 125 min

		SR 16				Comp. By: Date: Chk. By: Job No:		SS 1/15/2025 VV 044753201
			Time	of Concent	tration Ca	lculations		
Basin No: Condition:	Pre-Basin 3 Pre-Development							
	R-55 equation 3-							
	t oo oquanon o		-					
		AB Smooth	┥	BC Bermuda	-	—		
Surface Descriptio		surfaces		grass				
Manning's Roughr		0.011		0.41				
	iould be <= 100 ft)	20	ft		ft 	ft	ft	
Two-yr, 24-hr raint Elevation 1, E₁	ан, Г ₂	4.52	in #		in #	in	in #	
Elevation 2, E ₂		28.50 27.80	ft ft		ft	ft	ft ft	
Land Slope, s = (E	1 - E2) / L	0.04	ft/ft		ft/ft -	ft/ft	ft/ft	
Tt = 0.007 * (n * L)	$^{0.8}/(P_2^{0.5}*s^{0.4})$	0.00	hr		hr	hr	hr	
11 0.007 (11 2)	, , (12 0)	0.2	┪┈ ₊	3.4	¨' ₊ ├──	——————————————————————————————————————		3.6 min
Shallow Conce	entrated Flow [T	R-55 figure	3-1] -					
Surface Descriptio	n		-					
Flow Length, L			ft		ft 🗀	ft	ft	
Elevation 1, E ₁			ft		ft 🗀	ft -	ft	
Elevation 2, E ₂			ft		ft	ft	ft	
Watercourse Slope	e, s = (E ₁ - E ₂) / L		ft/ft		ft/ft	ft/ft	ft/ft	
Average Velocity,	V		ft/s		ft/s	ft/s	ft/s	
,,,	•		100				103	
$T_t = L / (3600 * V)$	•		hr		hr	hr	hr	
	·		-1					0.0 min
T _t = L / (3600 * V)			hr				hr	0.0 min
T _t = L / (3600 * V)	Flow [TR-55 eq	uation 3-4]	hr				hr	0.0 min
T _t = L / (3600 * V)			hr				hr	0.0 min
T _t = L / (3600 * V)		CD	hr				hr	0.0 min
T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel	hr +		hr +	hr +	hr	0.0 min
T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel 6.00	hr +		hr + ::1	hr +	hr =	0.0 min
T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel 6.00 5.00	hr +		hr +	hr +	hr	0.0 min
T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	CD Channel 6.00 5.00 4,00	hr +		:1 ::1 ::1	hr +	hr =	0.0 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H	CD Channel 6.00 5.00	hr +		th +	hr +	hr =	0.0 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD Channel 6.00 5.00 4.00 0.93	hr + :1 ft in		:1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1	:1	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional Fl	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a	CD Channel 6.00 5.00 4.00 0.93	hr + :1 ft :1 ft in sq ft		hr + ::1 ft ::1 ft ::1 sq ft	hr +	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.93	hr + :1 ft in		:1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1	:1	hr =	0.0 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49	hr + :1 ft :1 ft in sqft ft		hr + ::1 ft ::1 ft ::sqft ::sq	hr +	hr =	0.0 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62	hr + :1 ft :1 ft in sq ft ft ft		th + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hr +	hr =	0.0 min
Open Channel Open Channel Pipe Cross Sectional F Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570	hr + :1 ft :1 ft in sq ft ft ft ft		thr + ::1 ft	hr +	hr =	0.0 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00	hr + :1 ft in sqft ft ft ft ft		thr +	hr +	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00	hr + :1 ft in sqft ft ft ft ft		th + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hr +	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008	hr + :1 ft in sqft ft ft ft ft		th + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hr +	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008	hr + :1 ft :1 ft in sqft ft ft ft ft ft		:1	hr +	hr =	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75	hr + :1 ft :1 ft in sq ft ft ft ft ft ft ft ft ft		:1	hr +	hr =	0.0 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	79.6 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.93 8.97 14.49 0.62 3570 22.00 19.00 0.0008 0.042 0.75 1.33	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft ft/ft		:1	hr +	hr =	

		SR 16	3		D C	omp. By: ate: hk. By: bb No:	SS 1/15/2025 VV 21044753201
			Time	of Concentration			
Basin No: Condition:	Post-Basin 3 Post-Development	t					
Sheet Flow ITF	R-55 equation 3-	31					
			,				_
Surface Descriptio	n	AB Smooth surfaces	1	BC Bermuda grass			
Manning's Roughr	ness coeff., n	0.011		0.41			
	nould be <= 100 ft)	21	ft	28 ft	ft		ft
Two-yr, 24-hr raint	fall, P ₂	4,52	in	4.52 in	in		in
Elevation 1, E ₁			ft	ft	ft		ft -
Elevation 2, E ₂	= = \ / !	0.05	ft	ft	ft		ft a.g.
Land Slope, s = (E Tt = 0.007 * (n * L)	0.8 / (D 0.5 * 0.4\	0.05	ft/ft hr	0.07 ft/ft 0.07 hr	ft/		ft/ft
II = 0.007 * (II * L)) /(P ₂ "S)	0.00	- ''' ₊	4.0 +	hr		hr = 4.2 min
	ı	0.2	_				
Surface Descriptio	on .		7				
Flow Length, L	**		ft	ft	ft		ft
Elevation 1, E ₁			ft	ft	ft		ft
Elevation 2, E ₂			ft	ft	ft		ft
Watercourse Slope	$e, s = (E_1 - E_2) / L$		ft/ft	ft/ft	ft/	'ft	ft/ft
Average Velocity,	\/		ft/s	ft/s	ft/	's	ft/s
	V		10/5	10'5			— "···
$T_t = L / (3600 * V)$	V		hr	hr	hr	-	hr
	V		-			-	
T _t = L / (3600 * V)		vetion 2.41	hr			-	hr
T _t = L / (3600 * V)	Flow [TR-55 equ	uation 3-4]	hr			-	hr
T _t = L / (3600 * V)			hr			-	hr
T _t = L / (3600 * V)		CD	hr			-	hr
T _t = L / (3600 * V)			hr			+	hr
T _t = L / (3600 * V)	Flow [TR-55 equ	CD	hr +	hr +	hr	+	hr
T _t = L / (3600 * V)	Flow [TR-55 equ	CD	hr +	hr +	hr	+	hr = 0.0 min
T _t = L / (3600 * V)	Flow [TR-55 equ Front Slope, s ₁ Bottom width, B	CD	hr +	hr +	hr :1	+	hr = 0.0 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD	hr +	hr +	:1 ft	+	hr = 0.0 min ::1 ft ::1
Open Channel Open Channel Open Channel Pipe Cross Sectional Fl	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a	CD Pipe 36 7.07	hr +	hr	in the second se	+	hr = 0.0 min :1 ft
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	36 7.07 9.42	hr +	hr	hr :1	+ + I	hr = 0.0 min :1 ft :1 ft in sq ft ft ft
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	36 7.07 9.42	hr +	hr	hr hr	ų ft	hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft
Open Channel Open Channel Pipe Cross Sectional F Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	36 7.07 9.42 0.75 3570	hr + :1 ft :1 ft in sq ft ft ft ft	hr	the second secon	ą ft	hr = 0.0 min :1
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	36 7.07 9.42 0.75 3570 22.00	hr +	hr	the state of the s	+	hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00	hr + :1 ft in sqft ft ft ft ft	hr	the second secon	- +	hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008	hr +	hr	the state of the s	- +	hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00	hr + :1 ft in sqft ft ft ft ft	hr	the second secon	th the second se	hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008	:1 ft in sq ft ft ft ft ft ft ft/ft	hr	the second secon	th the second se	hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft ft ft ft ft
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s	hr	tt ft ft	th the second se	hr = 0.0 min :1
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	th the second se	hr = 0.0 min :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	th the second se	hr = 0.0 min :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity.	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	th the second se	hr = 0.0 min :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	th the second se	hr = 0.0 min :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	the second secon	hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 3570 22.00 19.00 0.0008 0.012 2.97	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s	hr	tt ft ft	the second secon	hr = 0.0 min :1 ft :1 ft in sq ft f

SS Comp. By: 1/15/2025 Date: **SR 16** VV Chk. By: 21044753201 Job No: **Time of Concentration Calculations** Basin No: Pre-Basin 4 & 5 & 6 Condition: Pre-Development Sheet Flow [TR-55 equation 3-3] Smooth Bermuda Surface Description surfaces grass Manning's Roughness coeff., n 0.011 0.41 Flow Length, L (should be <= 100 ft) 20 25 Two-yr, 24-hr rainfall, P₂ 4.52 4.52 in Elevation 1, E₁ 45.90 45.50 Elevation 2, E₂ 45.50 43,50 ft Land Slope, $s = (E_1 - E_2) / L$ 0.02 ft/ft 0.08 ft/ft ft/ft ft/ft Tt = 0.007 * (n * L) $^{0.8}$ / ($P_2^{0.5}$ * $S^{0.4}$) 0.06 0.00 hr hr hr 0.3 3.5 3.8 min Shallow Concentrated Flow [TR-55 figure 3-1] Surface Description Flow Length, L Elevation 1, E₁ Elevation 2, E₂ Watercourse Slope, $s = (E_1 - E_2) / L$ ft/ft ft/ft ft/ft ft/ft Average Velocity, V ft/s ft/s ft/s ft/s T_t = L / (3600 * V) hr hr hr 0.0 min Open Channel Flow [TR-55 equation 3-4] CD DE EF Channel Channel Channel Front Slope, s₁ 6.00 6.00 6.00 Bottom width, B 5.00 5.00 ft 5.00 Open Channel Back Slope, s₂ 4.00 4.00 4.00 Depth, H 0.84 0.80 ft 0.72 Diameter, D Pipe Cross Sectional Flow Area, a 7.73 7.20 6.19 sq ft sq ft sq ft sq ft Wetted Perimeter, Pw 13.57 13.16 12.35 Hydraulic radius, r = a / P_w 0.57 0.55 0.50 Flow Length, L 1500 2000 6500 Elevation 1, E₁ 43.50 43.30 31.00 Elevation 2, E₂ 43.30 31.00 21.00 ft Channel Slope, $s = (E_1 - E_2) / L$ 0.0015 0.0001 ft/ft 0.0062 ft/ft ft/ft ft/ft Manning's Roughness coeff., n 0.042 0.042 0.042 Average Velocity, V = 1.49 * r^{2/3} * s^{1/2} 0.88 ft/s 0.28 ft/s 1.86 ft/s ft/s $T_t = L / (3600 * V)$ ft/s 0.30 ft/s 2.06 ft/s 230.1 88 8 17.9 123.3 min **Total Time of Concentration** Watershed Tc = 234 min

		SR 16	3			Comp. By: Date: Chk. By: Job No:	SS 1/15/2025 VV 21044753201
			Time	of Concentr	ation Cal	culations	
	Post-Basin 4 Post-Developmen	t					
Sheet Flow [Ti	R-55 equation 3-	3]					
	Ī	AB	7	BC			
Surface Descriptio	on	Smooth	7	Bermuda		\neg	
·		surfaces	4	grass			
Manning's Roughr	ness coeπ., n nould be <= 100 ft)	0.011 21	- ft	0.41 28 ft		—— _{ft} —	ft
Two-yr, 24-hr rainf	,	4,52	- 'i _n	4.52 ir		—— ''	in
Elevation 1, E ₁	, . 2	.,,,,	ft ft	ft		ft	ft
Elevation 2, E ₂			ft	ft		ft	ft
Land Slope, s = (E	E ₁ - E ₂) / L	0.05	ft/ft	0.07 ft	/ft	ft/ft	ft/ft
Tt = 0.007 * (n * L)	$(P_2^{0.5} * s^{0.4})$	0.00	hr	0.07 h	r \square	hr	hr
	l	0.2	+	4.0	+	+	= 4.2 min
01	4 4	D 55 6	0.41				
Snallow Conce	entrated Flow [T	K-55 figure	3-1]				
]				
Surface Descriptio	on]				
Flow Length, L			ft	ft		ft	ft
Elevation 1, E ₁			ft	ft		ft	ft
Elevation 2, E ₂	/E E \ / I		ft	ft		ft	ft
vvatercourse Slope	$e, s = (E_1 - E_2) / L$		ft/ft	ft	/ft	ft/ft	ft/ft
	17		-1		, —	——————————————————————————————————————	
Average Velocity,			ft/s	ft		ft/s	ft/s
Average Velocity,			ft/s hr +	ft h		ft/s hr +	
Average Velocity, Γ_t = L / (3600 * V)		CD					ft/s hr
Average Velocity, T _t = L / (3600 * V)					+		ft/s hr
Average Velocity, T _t = L / (3600 * V) Open Channel	l Flow [TR-55 equ	CD	hr +	h	+	hr +	ft/s hr = 0.0 min
Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	CD	hr +	h	+	hr +	ft/s hr = 0.0 min
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H	CD Pipe	hr +		+	hr +	ft/s hr = 0.0 min :1 ft :1 ft ft
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD Pipe	:1 ft :1 in	ir	+	11 ft ft in	ft/s hr = 0.0 min :1 ft :1 ft in
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	CD Pipe 36 7.07	hr +	ft ir	r +	1	ft/s hr = 0.0 min :1 ft :1 ft :1 ft in sq ft
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	36 7.07 9.42	hr +	: :: ft	q ft	11 ft in sq ft ft	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	36 7.07 9.42	hr + :1 ft :1 ft in sq ft ft ft	ft f	qft	hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	36 7.07 9.42 0.75 2250	hr +	ft f	q ft	hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	36 7.07 9.42	hr + :1 ft :1 ft in sq ft ft ft	ft f	q ft	hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, Et Elevation 2, Et	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	36 7.07 9.42 0.75 2250 22.00	hr + :1 ft in sq ft ft ft ft	ft f	q ft	11	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft
Average Velocity, Tt = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, Et Elevation 2, Eg Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a , P _w = (E ₁ - E ₂) / L ness coeff., n	36 7.07 9.42 0.75 2250 22.00	hr + :1 ft :1 ft in sq ft ft ft ft	ft f	q ft	hr +	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 2250 20.00 0.0009	hr + :1 ft :1 ft in sq ft ft ft ft ft ft ft/ft ft/ft	h if ft ir ft ft ft ft ft ft ft ft ft f	q ft	hr +	ft/s hr = 0.0 min :1 ft :1 ft in sq ft ft ft ft ft
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft in sq ft ft ft ft ft	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 ft ft ft in sq ft
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 2250 20.00 0.0009 0.012 3.06	hr + :1 ft :1 ft in sq ft ft ft ft ft ft ft/ft ft/ft	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 ft :1 ft :1 ft in sq ft f
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min 1 1 ft 1 ft 1 in sq ft f
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a ,P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a ,P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a ,P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a ,P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Average Velocity, T _t = L / (3600 * V) Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a ,P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	36 7.07 9.42 0.75 22.00 20.00 0.0009 0.012 3.06 0.20	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/ft ft/s	h h h h h h h h h h h h h h h h h h h	q ft	hr +	ft/s hr = 0.0 min = 0.0 ft ft ft in sq ft

		SR 16	3			Comp Date: Chk. Job N	Ву:	SS 1/15/2025 VV 21044753201	
			Time	of Concer	ntration C	alculations			
Basin No: Condition:	Post-Basin 5 Pre-Development								
Sheet Flow [TR	R-55 equation 3-	3]							
-			_		, ,			_	
		AB Smooth	4	BC Bermuda	┨			+	
Surface Descriptio	on	surfaces		grass					
Manning's Roughr		0.011]	0.41					
	nould be <= 100 ft)	20	ft	25	ft	ft		ft	
Two-yr, 24-hr raint	fall, P ₂	4,52	lin	4.52	in	in		in 	
Elevation 1, E ₁ Elevation 2, E ₂			ft #		ft	ft		ft 	
Land Slope, s = (E	. - E ₂)/I	0.02	ft ft/ft	0.08	ft ft/ft	ft ft/ft	<u> </u>	ft ft/ft	
Tt = 0.007 * (n * L)	1 -2// - 10.8 / (P ₂ 0.5 * e ^{0.4})	0.02	hr	0.08	hr	hr	—	hr	
1. – 0.007 (II L)	, , (1 2 3)	0.00	- ''' ₊	3.5	√" ₊ ├─	——— '" ₊			nin
	'		_	0.0					
Surface Descriptio	on.		7		1			7	
Flow Length, L			ft		ft	ft		ft	
Elevation 1, E ₁			ft		ft	ft		ft	
Elevation 2, E ₂			ft		ft	ft		ft	
Watercourse Slope	e, s = (E ₁ - E ₂) / L		ft/ft		ft/ft	ft/ft		ft/ft	
			_		1				
Average Velocity,	V		ft/s		ft/s	ft/s		ft/s	
Average Velocity, $T_t = L / (3600 * V)$	V		ft/s hr		ft/s hr	hr		hr	
	V		-					hr	nin
T _t = L / (3600 * V)			hr					hr	nin
T _t = L / (3600 * V)	∨ Flow [TR-55 eq	uation 3-4]	hr					hr	nin
T _t = L / (3600 * V)			hr					hr	nin
T _t = L / (3600 * V)		CD	hr					hr	nin
T _t = L / (3600 * V)	Flow [TR-55 eq		hr +			hr +		hr = 0.0 m	nin
T _t = L / (3600 * V)	Flow [TR-55 equ	CD	hr +			hr +		hr = 0.0 m	nin
T _t = L / (3600 * V)	Flow [TR-55 equivalent of the state of the s	CD	hr +			hr +		hr = 0.0 m	nin
T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	CD	hr +			hr +		hr = 0.0 m :1 ft :1	nin
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H	CD Pipe	hr +			11 ft ft		hr = 0.0 m :1 ft :1 ft	nin
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD Pipe	hr +			:1 ft :1 ft in		hr = 0.0 m :1 ft :1 ft in	nin
Open Channel Open Channel Open Channel Pipe Cross Sectional Fl	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a	CD Pipe 60 19.63	hr +			:1 ft :1 ft in sq ft		hr = 0.0 m :1 ft :1 ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Pipe	hr +			:1 ft :1 ft in		hr = 0.0 m :1 ft :1 ft in sq ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	CD Pipe 60 19.63 15.71	hr +			hr +		hr = 0.0 m :1 ft :1 ft in sqft ft	nin
Open Channel Open Channel Pipe Cross Sectional F Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	60 19.63 15.71 1.25	hr +			hr +		hr = 0.0 m :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000	hr + :1 ft :1 ft in sq ft ft ft ft			tr +		hr = 0.0 m :1 ft in sqft ft ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 26.00	hr + :1 ft in sqft ft ft ft			tr +		hr = 0.0 m :1 ft in sqft ft ft ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 26.00 23.00 0.0008 0.012	:1 ft in sq ft ft ft ft ft ft ft/ft			tr +		hr = 0.0 m :1 ft in sqft ft ft ft ft ft ft ft ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95	:1 ft :1 ft ft ft ft ft/ft ft/s			hr +		hr = 0.0 m :1 ft in sqft ft	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr +		hr	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95	:1 ft :1 ft ft ft ft ft/ft ft/s			hr +		hr	nin
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1		hr	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1		hr	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1		hr	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1		hr	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1	Waters	hr = 0.0 m :1 ft in sqft ft f	nin
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2 Channel Slope, s Manning's Roughr Average Velocity, T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L hess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	60 19.63 15.71 1.25 4000 23.00 0.0008 0.012 3.95 0.28	:1 ft :1 ft ft ft ft ft/ft ft/s ft/s			hr + :1	Waters	hr = 0.0 m :1 ft :1 ft in sqft ft f	

		SR 16				Comp Date: Chk. Job N	Ву:	SS 1/15/2025 VV 21044753201	
			Time	of Conce	ntration C	alculations			
Basin No: Condition:	Post-Basin 6 Post-Developmen	t							
Sheet Flow [Ti	R-55 equation 3-	3]							
			_		, –		_	_	
		AB Smooth	┨	BC Bermuda	┥┝		-	\dashv	
Surface Descriptio	on	surfaces		grass					
Manning's Roughr		0.011]	0.41					
	nould be <= 100 ft)	20	ft	25	ft	ft		ft	
Two-yr, 24-hr raint	fall, P ₂	4.52	lin -	4.52	lin L	in		in	
Elevation 1, E ₁		45.90	ft	45.50	ft	ft		—ft	
Elevation 2, E ₂ Land Slope, s = (E	F Fa)/I	45.50 0.02	ft ft/ft	43.50 0.08	ft ft/ft	ft ft/ft	-	ft ft/ft	
Tt = 0.007 * (n * L)	-1 -2//- \0.8 / (P_0.5 * e ^{0.4} \	0.02	hr	0.08	hr	hr	<u> </u>	hr	
11 = 0.007 (II L)) /(F ₂ S)	0.00	- ''' ₊	3.5	┤" ₊ ├─	 " ₊			min
		0.0		0.0					
Surface Descriptio	on								
Flow Length, L			ft		-ft	ft	<u> </u>	ft	
Elevation 1, E ₁ Elevation 2, E ₂			ft ft		- ft 	ft ft		ft ft	
Watercourse Slope	e s = (F F ₂) / l		ft/ft		ft ft/ft	ft ft/ft		ft/ft	
vvatercourse olop	C, 3 - (L1 - L2) / L		IIVIL						
Average Velocity	V		ft/c					—	
Average Velocity,	V		ft/s hr		ft/s	ft/s		ft/s	
Average Velocity, T _t = L / (3600 * V)	V		ft/s hr +					ft/s hr	min
	V		hr		ft/s hr	ft/s		ft/s hr	min
T _t = L / (3600 * V)	∨ Flow [TR-55 eq	uation 3-4]	hr		ft/s hr	ft/s		ft/s hr	min
T _t = L / (3600 * V)			hr		ft/s hr	ft/s		ft/s hr	min
T _t = L / (3600 * V)		CD	hr	DE	ft/s hr	ft/s		ft/s hr	min
T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel	hr +	Channel	ft/s hr +	ft/s hr +		ft/s hr	min
T _t = L / (3600 * V)	Flow [TR-55 eq	CD Channel 6.00	hr +	Channel 6.00	ft/s hr +	ft/s hr +		ft/s hr = 0.0	min
T _t = L / (3600 * V)	Flow [TR-55 equivalent of the state of the s	CD Channel 6.00 5.00	hr +	6.00 5.00	ft/s hr + :1	ft/s hr +		ft/s hr	min
T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	CD Channel 6.00 5.00 4.00	hr +	6.00 5.00 4.00	ft/s hr +	ft/s hr +		ft/s hr = 0.0	min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H	CD Channel 6.00 5.00	hr +	6.00 5.00	ft/s hr +	ft/s hr +		ft/s hr = 0.0	min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	CD Channel 6.00 5.00 4.00 0.84	hr + :1 ft in	Channel 6.00 5.00 4.00 0.80	ft/s hr +	ft/s hr +		ft/s hr = 0.0	min
Open Channel Open Channel Open Channel Pipe Cross Sectional Fl	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	CD Channel 6.00 5.00 4.00 0.84	hr + :1 ft :1 ft in sq ft	Channel 6.00 5.00 4.00 0.80	ft/s hr + :1 ft :1 ft in sq ft	ft/s hr +		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57	hr + :1 ft :1 ft in sq ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16	ft/s hr + :1 ft in sq ft ft	ft/s hr + :1 ft :1 ft in sq ft ft		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57	hr + :1 ft :1 ft in sq ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55	ft/s hr	ft/s hr +		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional F Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57	hr + :1 ft :1 ft in sqft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16	ft/s hr + :1 ft in sq ft ft	ft/s hr + :1 ft :1 ft in sq ft ft ft		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57	hr + :1 ft :1 ft in sq ft ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000	ft/s hr	ft/s hr + :1 ft :1 ft in sq ft ft ft		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E1 Elevation 2, E2	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30	ft/s hr	ft/s hr + :1 ft :1 ft in sq ft ft ft ft		ft/s hr = 0.0	min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00	ft/s hr	ft/s hr + :1 ft :1 ft in sq ft ft ft ft ft		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28	hr + :1 ft :1 ft in sq ft ft ft ft ft ft ft ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28	hr + :1 ft :1 ft in sq ft ft ft ft ft ft ft ft ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f		ft/s hr = 0.0	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f	Water	ft/s hr = 0.0	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	CD Channel 6.00 5.00 4.00 0.84 7.73 13.57 0.57 1500 43.50 43.30 0.0001 0.042 0.28 1.48	hr + :1 ft :1 ft in sq ft ft/ft	Channel 6.00 5.00 4.00 0.80 7.20 13.16 0.55 2000 43.30 31.00 0.0062 0.042 1.86 0.30	ft/s hr + :1 ft :1 ft in sq ft f	ft/s hr + :1 ft :1 ft in sq ft f	Waters	ft/s hr = 0.0	

SS Comp. By: 1/15/2025 Date: **SR 16** VV Chk. By: 21044753201 Job No: **Time of Concentration Calculations** Basin No: Post-Basin 5 & 6 Condition: Pre-Development Sheet Flow [TR-55 equation 3-3] Smooth Bermuda Surface Description surfaces grass Manning's Roughness coeff., n 0.011 0.41 Flow Length, L (should be <= 100 ft) 20 25 Two-yr, 24-hr rainfall, P₂ 4.52 4.52 in Elevation 1, E₁ 45.90 45.50 Elevation 2, E₂ 45.50 43,50 ft Land Slope, $s = (E_1 - E_2) / L$ 0.02 ft/ft 0.08 ft/ft ft/ft ft/ft Tt = 0.007 * (n * L) $^{0.8}$ / ($P_2^{0.5}$ * $S^{0.4}$) 0.06 0.00 hr hr hr 0.3 3.5 3.8 min Shallow Concentrated Flow [TR-55 figure 3-1] Surface Description Flow Length, L Elevation 1, E₁ Elevation 2, E₂ Watercourse Slope, $s = (E_1 - E_2) / L$ ft/ft ft/ft ft/ft ft/ft Average Velocity, V ft/s ft/s ft/s ft/s T_t = L / (3600 * V) hr hr hr 0.0 min Open Channel Flow [TR-55 equation 3-4] CD DE EF Channel Channel Pipe Front Slope, s₁ 6.00 6.00 Bottom width, B 5.00 5.00 ft Open Channel Back Slope, s₂ 4.00 4.00 Depth, H 0.84 0.80 Diameter, D Pipe Cross Sectional Flow Area, a 7.73 7.20 19.63 sq ft sq ft sq ft sq ft Wetted Perimeter, Pw 13.57 13.16 15.71 Hydraulic radius, r = a / P_w 0.57 0.55 1.25 Flow Length, L 4000 1500 2000 Elevation 1, E₁ 43.50 43.30 26.00 Elevation 2, E₂ 23.00 43.30 31.00 ft Channel Slope, $s = (E_1 - E_2) / L$ 0.0008 0.0001 ft/ft 0.0062 ft/ft ft/ft ft/ft Manning's Roughness coeff., n 0.042 0.042 0.012 Average Velocity, V = 1.49 * r^{2/3} * s^{1/2} 3.95 ft/s 0.28 ft/s 1.86 ft/s ft/s $T_t = L / (3600 * V)$ ft/s 0.30 ft/s 0.28 ft/s 123.6 88 8 17.9 16.9 min **Total Time of Concentration** Watershed Tc = 127 min

		SR 16	3		Comp. By: Date: Chk, By: Job No:	SS 1/15/2025 VV 21044753201
			Time of	Concentration Calo	•	
Basin No:						
Condition:	Pre- & Post-Devel	opment				
Sheet Flow [Ti	R-55 equation 3-	3]				
	1					
		AB Dense	⊣ ⊢			
Surface Descriptio	n	grasses				
Manning's Roughr	ness coeff., n	0.24	1			
	ould be <= 100 ft)	100	ft	ft	ft	ft
Two-yr, 24-hr raint	fall, P ₂	4.52	_lin	in	in	in
Elevation 1, E ₁		26.82	ft	ft	ft	ft
Elevation 2, E ₂ Land Slope, s = (E	- F ₂)/I	25.97 0.01	ft ft/ft	ft ft/ft	ft ft/ft	ft ft/ft
Tt = 0.007 * (n * L)	0.8 / (P ₂ 0.5 * s ^{0.4})	0.01	hr	hr	hr	hr
5.557 (II L)	(, , , , , , , , , , , , , , , , , ,	16.9	┥¨ ₊ ┝─		—— ``` ₊	= 16.9 min
	'					
Shallow Conce	entrated Flow [T	R-55 figure	3-1]			
		BC	↓ ⊢			
Surface Descriptio	n	Unpaved	4. L	—— <u> </u>	⊢ ,	<u> </u>
Flow Length, L Elevation 1, E ₁		842	-ft	ft	ft	ft
Elevation 2, E ₂		26.82 23.91	_ft	ft ft	ft	ft ft
Watercourse Slope	e. s = (E ₁ - E ₂) / L	1.000	⊣" _{ft/ft} ⊢	ft/ft	ft/ft -	ft/ft
Average Velocity,		16.13	ft/s	ft/s	ft/s	ft/s
T _t = L / (3600 * V)		0.01	hr	hr	hr	hr
			hr +			hr = 0.9 min
T _t = L / (3600 * V)		0.01 0.9	→			
T _t = L / (3600 * V)	Flow [TR-55 eq	0.01 0.9	→			
T _t = L / (3600 * V)		0.01 0.9 uation 3-4]	→			
T _t = L / (3600 * V)		0.01 0.9 uation 3-4]	→			
T _t = L / (3600 * V)	Flow [TR-55 eq	0.01 0.9 uation 3-4]] · E	hr +	hr +	
T _t = L / (3600 * V)	Flow [TR-55 eq	0.01 0.9 uation 3-4] CD Channel 6.00] + [hr +	hr + :1	
T _t = L / (3600 * V)	Flow [TR-55 eq	0.01 0.9 uation 3-4] CD Channel 6.00 5.00	+	hr +	hr +	= 0.9 min
T _t = L / (3600 * V)	Flow [TR-55 eq	0.01 0.9 uation 3-4] CD Channel 6.00] + [hr +	hr + :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	= 0.9 min
T _t = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00	:1 ft :1	hr +	hr +	= 0.9 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00	:1	hr +	hr + :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	= 0.9 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	hr + :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	hr +	= 0.9 min :1 ft :1 ft in sq ft ft
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	thr +	hr +	= 0.9 min :1 ft in sq ft ft
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 ft :1 ft in sq ft ft ft
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91	+ :1 :1 :1 :1 :in :sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 ft :1 ft in sq ft ft ft ft
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 15.21 0.66 1189 23.91 22.23	+ :1 :1 :1 :1 :in :sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 15.21 0.66 1189 23.91 22.23 0.0014	+ :1 :1 :1 :1 :in :sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 ft :1 ft in sq ft ft ft ft
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042	+ :1 ft ::1 ft :in :sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01	+ :1 ft :1 ft :in :sq ft :ft :ft :ft :ft :ft :ft :ft :ft :ft	hr +	hr + ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :	= 0.9 min :1 ft :1 ft in sq ft f
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042	+ :1 ft ::1 ft :in :sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :	hr +	hr	= 0.9 min :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr	= 0.9 min :1 ft :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr	= 0.9 min :1 ft :1 ft :1 ft in sq ft f
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr	= 0.9 min :1 ft :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr	= 0.9 min :1 ft :1 ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr +	= 0.9 min :1 ft ft :1 ft in sq ft f
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D ow Area, a P _w = a / P _w = (E ₁ - E ₂) / L Dess coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.01 0.9 uation 3-4] CD Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 23.91 22.23 0.0014 0.042 1.01 0.33	+ :1 ft :1 f	hr +	hr	= 0.9 min :1 ft ft :1 ft in sq ft f

		SR 16					Comp. B Date: Chk. By: Job No:	y:		SS 1/15/2025 VV 21044753201	
			Time	of Conce	ntration	Calcula	tions				
Basin No:	Tomoka Pines										
Condition:	Pre- & Post-Deve	lopment									
Sheet Flow [TI	R-55 equation 3-	.31									
		AB]] [] [
Surface Description	n	Woods Dens	Э								
		underbrush			╛╘		╛┡				
Manning's Roughr		0.8	١,		- _		⊣ " ⊦				
	nould be <= 100 ft)	100	ft		- ft -		- ft -		⊢ft		
Two-yr, 24-hr raint Elevation 1, E ₁	Iali, P ₂	4,52	in		in		⊣ ⁱⁿ		— in		
Elevation 2, E ₂		28.48 28.30	ft ft		- ft ft		ft ft		—ft ft		
Land Slope, s = (E	- Fa)/I	0.00	ft/ft		⊣",		⊣",		⊢" ft/ft		
Tt = 0.007 * (n * L)		1.37	hr		Hhr F		Hhr F		hr		
11 0.007 (II L	, , (12 0)	82.4	- ``` ₊		┥┈╷┝		┪┈╷┠		⊣" ₌	82.4	min
		•	-						_		_
Shallow Conce	entrated Flow [T	R-55 figure	3-1]								
	_										
		BC]] [] [
Surface Description	n	Unpaved]] [
Flow Length, L		3412	ft		ft		ft		ft		
Elevation 1, E ₁		28.30	ft		ft		ft		ft		
Elevation 2, E ₂		25.80	ft		_ft		_ft		ft		
Watercourse Slop		0.001	ft/ft		ft/ft		ft/ft		ft/ft		
Average Velocity,	V	0.44	ft/s		ft/s		ft/s		ft/s		
			hr								_
$T_t = L / (3600 * V)$		2.17	-		⊢ ^{hr} ⊢		⊢ ^{hr} ⊢		hr		
I _t = L / (3600 ° V)		2.17 130.2			⊐ '" + Ŀ		∃ ''' + 		 =	130.2	min
	51 ITD 55	130.2	-				⊣ ⊦		 " =	130.2	min
	Flow [TR-55 eq	130.2	-				⊣ ⊦			130.2	min
	Flow [TR-55 eq	130.2 uation 3-4]	-	DE			⊣ ⊦]" = 	130.2	min
	Flow [TR-55 eq	130.2 uation 3-4]	-	DE Channel			⊣ ⊦]" = 	130.2	min
		130.2 uation 3-4] CD Channel] + 	Channel] → [} [] + [] []	130.2	min
Open Channel	Front Slope, s ₁	130.2 uation 3-4] CD Channel 10.00	† +]:1	Channel 6.00] + [] + [=	130.2	min
	Front Slope, s ₁ Bottom width, B	130.2 uation 3-4] CD Channel 10.00 125.00	+ 	6.00 5.00	:1 ft] + [] []	130.2	min
Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂	130.2 uation 3-4] CD Channel 10.00 125.00 10.00	† +]:1	6.00 5.00 4.00	+		+		= :1 ft	130.2	min
Open Channel	Front Slope, s ₁ Bottom width, B	130.2 uation 3-4] CD Channel 10.00 125.00	+ :1 ft :1	6.00 5.00	:1 ft		+		= :1 ft :1	130.2	min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	130.2 uation 3-4] CD Channel 10.00 125.00 10.00	+ :1 ft :1	6.00 5.00 4.00	+ :1 :1 :1 :1 :1 :1		+ :1 :1 :1 :1 :1 :1		:1 ft :1 ft	130.2	min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50	+ :1 ft :1 ft in	Channel 6.00 5.00 4.00 1.00	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		+ :1 ft ft in		:1 ft :1 ft in	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00	:1 ft :1 ft in sq ft	Channel 6.00 5.00 4.00 1.00	+ :1 ft ft in sq ft		:1 ft :1 ft in sq ft		:1 ft :1 ft in sq ft	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05	+ :1 ft :1 ft in sqft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		+ :1 ft in sq ft		:1 ft :1 ft in sq ft ft	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	130.2 uation 3-4] CD Channel 10.00 125.00 0.50 65.00 135.05 0.48	+ :1 ft :1 ft in sq ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		:1 ft :1 ft in sq ft ft	130.2	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	130.2 uation 3-4] CD Channel 10.00 125.00 0.50 65.00 135.05 0.48 432	+ :1 ft :1 ft in sq ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189	+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		:1 ft :1 ft in sq ft ft ft	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80	+ :1 ft :1 ft in sq ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22	+ :1 :1 :1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :		+ :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1		= :1 ft :1 ft :1 in sq ft ft tt	130.2	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L hess coeff., n	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22	+ :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23	+ :1 :1 :1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :		+ :1		= :1 	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013	+ :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025	+ :1 :1 :1 ::1 ::1 ::1 ::1 ::1 ::1 ::1 :		+ :1		= :1 	130.2	min
Open Channel Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L hess coeff., n	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100	+ :1 ft :1 sq ft ft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042	+ :1		+ :1		= :1 	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L hess coeff., n	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34	+ :1 ft :1 ft in sq ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35	+ :1 ft ft ft ft ft ft ft f		+ :1		= :1 ft ::1 ft :1 ft :1 ft ft ft ft ft ft ft ft ft/ft	130.2	min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L hess coeff., n	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1 ft :1 in sq ft ft ft ft ft ft ft ft ft/ft ft/ft ft/fs		= :1 ft ::1 ft :1 ft :1 ft ft ft ft ft ft ft ft ft/ft ft/fs		
Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Average Velocity, T, = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L less coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1 ft :1 in sq ft ft ft ft ft ft ft ft ft/ft ft/ft ft/fs		= :1 ft ::1 ft :1 ft :1 ft ft ft ft ft ft ft ft ft/ft ft/fs		
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E Elevation 2, E Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L less coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1 ft :1 in sq ft ft ft ft ft ft ft ft ft/ft ft/ft ft/fs		= :1 ft ::1 ft :1 ft :1 ft ft ft ft ft ft ft ft ft/ft ft/fs		
Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Average Velocity, T, = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L less coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1 ft :1 in sq ft ft ft ft ft ft ft ft ft/ft ft/ft ft/fs		= :1 ft ::1 ft :1 ft :1 ft ft ft ft ft ft ft ft ft/ft ft/fs		
Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Average Velocity, T, = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L less coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1		= :1 ft :1 ft in sq ft ft ft ft ft ft ft ft/s ft/s =	36.2	min
Open Channel Pipe Cross Sectional Fl Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Average Velocity, T, = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L less coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	130.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 432 25.80 25.22 0.0013 0.100 0.34 0.36	+ :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 25.22 22.23 0.0025 0.042 1.35 0.25	+		+ :1	ed Tc to Bo	= :1 ft :1 ft in sq ft ft ft ft ft ft ft ft/s ft/s =	36.2	

		SR 16					Comp. E Date: Chk. By Job No:			SS 1/15/2025 VV 21044753201
			Time	of Conce	ntratio	n Calculat	tions			
	Turning Point Pre- & Post-Devel	lopment								
Sheet Flow [TF	R-55 equation 3-	3]								
			7		7		- 1		_	
Surface Descriptio	on	AB Woods Dense underbrush	2		1		1		1	
Manning's Roughr	ness coeff., n	0.8	1		1		1			
	nould be <= 100 ft)	100	ft		ft		ft		ft	
Two-yr, 24-hr rainf	fall, P ₂	4,52	in		in		in		in	
Elevation 1, E ₁		29.41	ft		ft		ft		ft	
Elevation 2, E ₂		29.18	ft		ft		ft		ft	
Land Slope, s = (E	E ₁ - E ₂) / L	0.00	ft/ft		ft/ft		ft/ft		ft/ft	
Tt = 0.007 * (n * L)) ^{0.8} / (P ₂ ^{0.5} * s ^{0.4})	1.25	hr		hr		hr		hr	
		74.7	+		_ +		_ ↑		_ =	74.7 min
Surface Descriptio	on	BC Unpaved	}		}]			
Flow Length, L		645	ft		ft		ft		ft	
Elevation 1, E ₁		29.18	ft		ft		ft		ft	
Elevation 2, E ₂		26.44	ft		ft		ft		ft	
Watercourse Slope		0.004	ft/ft		ft/ft		ft/ft		ft/ft	
	17	4 0 5	ft/s		ft la	1	ft/s		ft/s	
Average Velocity,	V	1.05	ius		ft/s		_ ''' ⁵		lus	
Average Velocity, $T_t = L / (3600 * V)$	V	0.17	hr		hr		hr		hr	10.2 min
	V		4		-		⊣ 1		_	10.2 min
T _t = L / (3600 * V)		0.17 10.2	hr		hr		hr		hr	10.2 min
T _t = L / (3600 * V)	Flow [TR-55 eq	0.17 10.2	hr		hr		hr		hr	10.2 min
T _t = L / (3600 * V)		0.17 10.2	hr	DE	hr	EF	hr		hr	10.2 min
T _t = L / (3600 * V)		0.17 10.2 uation 3-4]	hr	DE Channel	hr	EF Channel	hr		hr	10.2 min
T _t = L / (3600 * V)		0.17 10.2 uation 3-4]	hr		hr		hr		hr	10.2 min
T _t = L / (3600 * V) Open Channel	Flow [TR-55 eq	0.17 10.2 uation 3-4]	hr +	Channel	hr +	Channel	hr +		hr =	10.2 min
T _t = L / (3600 * V)	Flow [TR-55 eq	0.17 10.2 uation 3-4] CD Channel 10.00	hr +	Channel 6.00	hr +	Channel 6.00	hr +		hr =	10.2 min
T _t = L / (3600 * V) Open Channel	Flow [TR-55 eq Front Slope, s ₁ Bottom width, B	0.17 10.2 uation 3-4] CD Channel 10.00 125.00	hr +	Channel 6.00 5.00	hr +	Channel 6.00 5.00	hr +		hr =	10.2 min
Open Channel Open Channel	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50	hr +	Channel 6.00 5.00 4.00 1.00	hr +	Channel 6.00 5.00 4.00 1.00	hr +		hr =	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50	hr + :1 ft :1	Channel 6.00 5.00 4.00 1.00	hr +	Channel 6.00 5.00 4.00 1.00	hr + :1 ft ft		:1 ft	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05	hr + :1 ft :1 ft in sqft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21	hr + :1 ft :1 ft in sqft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21	hr + :1 ft :1 ft in sqft ft		:1 ft ::1 ft in sq ft ft	10.2 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 0.50 65.00 135.05 0.48	hr + :1 ft :1 ft in sq ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66	hr + :1 ft :1 ft in sq ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66	hr + :1 :1 :1 :1 :in sqft :ft :ft :ft :ft :ft :ft :ft :ft :ft :		hr = :1 ft :1 ft in sq ft ft	10.2 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.50 65.00 135.05 0.48 633	hr + :1 ft :1 ft in sq ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037	hr + :1 ft in sq ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189	hr + :1 ft :in sqft ft ft		hr =	10.2 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44	hr + :1 :1 :1 :tt in sqft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03	hr + :1 ft :in sqft ft ft ft		hr =	10.2 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23	hr + :1 ft :1 ft ft ft ft ft		hr =	10.2 min
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s =	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007	hr + :1 :1 :1 :tt in sqft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005	hr + :1 ft in sqft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015	hr + :1 ft :in sqft ft ft ft		hr =	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007	hr + :1 ft in sq ft ft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042	hr + :1 ft in sq ft ft ft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042	hr + :1 ft :1 ft ft ft ft ft ft		hr = :1 ft :1 ft in sq ft ft ft ft ft ft	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100	hr + :1 ft :1 ft tin sq ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04	hr + :1 ft :1 ft f		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft ft/s ft/s		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft ft/s	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100	hr + :1 ft :1 ft tin sq ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63	hr + :1 ft :1 ft in sqft ft ft ft ft ft ft ft ft	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04	hr + :1 ft :1 ft f		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft	10.2 min
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = (E ₁ - E ₂) / L ness coeff., n	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft ft/s ft/s		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft ft/s	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft ft/s ft/s		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft ft/s	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft ft/s ft/s		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft ft/s	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E, Elevation 2, E, Channel Slope, s Manning's Roughr Average Velocity,	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft ft/s ft/s		hr = :1 ft :1 ft :1 ft ft ft ft ft ft ft/ft ft/ft ft/s	
Open Channel Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s +	sed To to Ro	hr = :1 ft in sq ft ft ft ft ft ft/ft ft/ft =	
Open Channel Open Channel Pipe Cross Sectional FI Wetted Perimeter, Hydraulic radius, r Flow Length, L Elevation 1, E ₁ Elevation 2, E ₂ Channel Slope, s Manning's Roughr Average Velocity, T ₁ = L / (3600 * V)	Front Slope, s ₁ Bottom width, B Back Slope, s ₂ Depth, H Diameter, D low Area, a P _w = a / P _w = (E ₁ - E ₂) / L ness coeff., n V = 1.49 * r ^{2/3} * s ^{1/2} /	0.17 10.2 uation 3-4] CD Channel 10.00 125.00 10.00 0.50 65.00 135.05 0.48 633 26.44 25.98 0.0007 0.100 0.25	hr + :1 ft :1 ft in sq ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 3037 25.69 24.03 0.0005 0.042 0.63 1.34	hr + :1 ft :1 ft in sqft ft f	Channel 6.00 5.00 4.00 1.00 10.00 15.21 0.66 1189 24.03 22.23 0.0015 0.042 1.04 0.32	hr + :1 ft :1 ft ft ft ft ft ft/ft ft/s ft/s +	ned Tc to Bo	hr = :1 ft in sq ft ft ft ft ft ft/ft ft/ft =	

Comp. By: SS 1/15/2025 Date: **SR 16** Chk. By: VV Job No: 21044753201 **Time of Concentration Calculations** Basin No: South of Park Place Condition: Pre- & Post-Development Sheet Flow [TR-55 equation 3-3] Woods Dens Surface Description underbrush Manning's Roughness coeff., n 8.0 Flow Length, L (should be <= 100 ft) 100 Two-yr, 24-hr rainfall, P₂ 4.52 in Elevation 1, E₁ 46.52 Elevation 2, E₂ 46,39 ft Land Slope, $s = (E_1 - E_2) / L$ 0.00 ft/ft ft/ft ft/ft ft/ft Tt = 0.007 * (n * L) $^{0.8}$ / ($P_2^{0.5}$ * $S^{0.4}$) 1.56 hr hr hr 93.9 93.9 min Shallow Concentrated Flow [TR-55 figure 3-1] BC CD Surface Description Unpaved Unpaved Flow Length, L 1949 960 Elevation 1, E₁ 46.39 43.46 Elevation 2, E₂ 43.46 31.26 Watercourse Slope, $s = (E_1 - E_2) / L$ 0.002 ft/ft 0.013 ft/ft ft/ft ft/ft Average Velocity, V 0.63 ft/s 1.82 ft/s ft/s ft/s T_t = L / (3600 * V) 0.15 0.87 hr hr hr 8.8 60.7 min Open Channel Flow [TR-55 equation 3-4] DE EF FG GH Channel Channe Channel Channel Front Slope, s₁ 10.00 6.00 6.00 6.00 Bottom width, B 125.00 5.00 5.00 5.00 ft Open Channel Back Slope, s₂ 10.00 4.00 4.00 4.00 Depth, H 0.50 1.00 1.00 1.00 Pipe Diameter, D Cross Sectional Flow Area, a 65.00 10.00 10.00 10.00 sq ft sq ft sq ft sq ft Wetted Perimeter, Pw 135.05 15.21 15.21 15.21 Hydraulic radius, r = a / P_w 0.48 0.66 0.66 0.66 Flow Length, L 2037 1793 3037 1189 Elevation 1, E₁ 25.69 24.03 31.26 27.31 Elevation 2, E₂ 28.02 25.69 24,03 ft 22.23 Channel Slope, $s = (E_1 - E_2) / L$ 0.0016 ft/ft 0.0009 ft/ft 0.0005 ft/ft 0.0015 ft/ft Manning's Roughness coeff., n 0.100 0.042 0.042 0.042 Average Velocity, V = 1.49 * $r^{2/3}$ * $s^{1/2}$ 0.36 ft/s 0.63 0.81 ft/s 1.04 ft/s ft/s $T_t = L / (3600 * V)$ 1.55 ft/s ft/s 1.34 ft/s 0.32 ft/s 93.0 229.8 37.1 80.7 19.0 min **Total Time of Concentration** Watershed Tc to Boundry 4 = min

Comp. By: SS 1/15/2025 Date: **SR 16** Chk. By: VV Job No: 21044753201 **Time of Concentration Calculations** Basin No: Soluna Apartments Condition: Pre- & Post-Development Sheet Flow [TR-55 equation 3-3] Woods Dens Surface Description underbrush Manning's Roughness coeff., n 8.0 Flow Length, L (should be <= 100 ft) 100 Two-yr, 24-hr rainfall, P₂ 4.52 in Elevation 1, E₁ 47.74 Elevation 2, E₂ 46,44 ft Land Slope, $s = (E_1 - E_2) / L$ 0.01 ft/ft ft/ft ft/ft ft/ft Tt = 0.007 * (n * L) $^{0.8}$ / ($P_2^{0.5}$ * $S^{0.4}$) 0.62 hr hr hr 37.4 37.4 min Shallow Concentrated Flow [TR-55 figure 3-1] BC CD Surface Description Unpaved Unpaved Flow Length, L 303 2423 Elevation 1, E₁ 46.44 42.74 Elevation 2, E₂ 42.74 42.32 Watercourse Slope, $s = (E_1 - E_2) / L$ 0.012 ft/ft 0.000 ft/ft ft/ft ft/ft Average Velocity, V 1.78 ft/s 0.21 ft/s ft/s ft/s T_t = L / (3600 * V) 0.05 hr 3.17 hr hr 190.1 192.9 min Open Channel Flow [TR-55 equation 3-4] CD Channe Channel Channel Channel Front Slope, s₁ 6.00 6.00 6.00 Bottom width, B 5.00 5.00 5.00 5.00 ft Open Channel Back Slope, s₂ 4.00 4.00 4.00 4.00 Depth, H 1.00 1.00 1.00 1.00 Pipe Diameter, D Cross Sectional Flow Area, a 10.00 10.00 10.00 10.00 sq ft sq ft sq ft sq ft Wetted Perimeter, Pw 15.21 15.21 15.21 15.21 Hydraulic radius, r = a / P_w 0.66 0.66 0.66 0.66 Flow Length, L 3457 1793 3037 1189 Elevation 1, E₁ 42.32 25.69 24.03 27.31 Elevation 2, E₂ 27.31 25.69 24,03 ft 22.23 Channel Slope, $s = (E_1 - E_2) / L$ 0.0043 ft/ft 0.0009 ft/ft 0.0005 ft/ft 0.0015 ft/ft Manning's Roughness coeff., n 0.042 0.042 0.042 0.042 Average Velocity, V = 1.49 * $r^{2/3}$ * $s^{1/2}$ ft/s 0.63 0.81 ft/s 1.04 1.77 ft/s ft/s $T_t = L / (3600 * V)$ 0.54 ft/s ft/s 1.34 ft/s 0.32 ft/s 32 6 37.1 80.7 19.0 169.3 min **Total Time of Concentration** Watershed Tc to Boundry 4 = 400 min

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

 Job No:
 21044753201

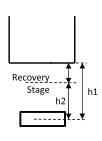
Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 2A & 2B

OFW: FALSE ICPR Scenario: POST

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	41.21	3.43	0.00	3.43
(Criteria B) 2.5" over Impervious Area	18.31	3.81	0.00	3.81
Required Treatment Volume [max(A, I	3)]	-	-	3.81


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		28.00	6.24	52.64	27.63
Treatment Weir	Provided	24.00	5.10	29.96	4.95
Treatment vven	Required	23.78	5.03	28.82	3.81
Orifice Invert / NWL		23.00	4.81	25.01	0.00
Break		21.00	4.26	15.94	-
Bottom		17.00	3.71	0.00	-
Sump Top		17.00	3.71	0.00	-
Sump Bottom		17.00	3.71	0.00	-

Recovery Analysis

Treatment	Head, h₁	0.88	ft
	Elevation	23.62	ft
Booovery	Required Vol.	1.91	ac-f
Recovery	Design Vol.	1.91	ac-f
	Head, h ₂	0.50	ft
Mean Value	Head, h _m	0.69	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	10.00	in
	Area, A	0.21	ft ²
	Centerline Elev.	23.13	ft
Flow = (0.6	*A*(2*32.2*h _m) ^{0.5})*n	0.83	cfs
Time to Recover \	/olume	27.78	hr

	С	Area (ac)	C * Area	
Water	1.00	4.81	4.81	7
Impervious	0.95	18.31	17.39	1
Pervious Open Space	0.20	18.09	3.62	1
Total		41.21	25.82	
Weighted Runoff Coefficient, c	ficient, c			
Residence Time, t		14	days	
Wet Season Duration, d			153	days
Wet Season Rainfall, r			29.00	in
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	8.57	ac-ft
Fermanent Fooi		Provided	25.01	ac-ft
Mean Depth			5.20	ft

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

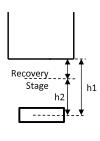
 Job No:
 21044753201

Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 2C OFW: FALSE ICPR Scenario: POST 2

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	47.51	3.96	0.00	3.96
(Criteria B) 2.5" over Impervious Area	18.31	3.81	0.00	3.81
Required Treatment Volume [max(A, I	3.96			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		25.50	9.54	61.82	35.28
Treatment Weir	Provided	22.00	8.28	30.63	4.10
Treatment Wen	Required	21.98	8.27	30.50	3.96
Orifice Invert / NWL		21.50	8.10	26.54	0.00
Break		19.50	7.54	10.90	-
Bottom		18.00	6.99	0.00	ı
Sump Top		18.00	6.99	0.00	-
Sump Bottom		18.00	6.99	0.00	-

Recovery Analysis

Treatment	Head, h₁	0.38	ft
Trodamon.	Elevation		
Recovery	Required Vol.	1.98	ac-f
	Design Vol.	1.98	ac-f
	Head, h ₂	0.13	ft
Mean Value	Head, h _m	0.25	ft
	Count, n	1	1
	Height	3.00	in
Orifice	Width	18.00	in
	Area, A	0.38	ft ²
	Centerline Elev.	21.63	ft
Flow = (0.6	0.91	cfs	
Time to Recover \	/olume	26.28	hr

	С	Area (ac)	C * Area	
Water	1.00	8.10	8.10	7
Impervious	0.95	18.31	17.39	1
Pervious Open Space	0.20	21.10	4.22	1
Total		47.51	29.71	
Weighted Runoff Coefficient, c	Runoff Coefficient, c			1
Residence Time, t		14	days	
Wet Season Duration, d			153	days
Wet Season Rainfall, r			29.00	in
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	9.86	ac-ft
Fermanent Fooi		Provided	26.54	ac-ft
Mean Depth			3.28	ft

Comp. By: SS 1/15/2025 Date: Chk. By: 21044753201 Job No:

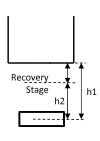
Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 3A, 3B, 3C

OFW: FALSE ICPR Scenario: POST

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	18.97	1.58	0.00	1.58
(Criteria B) 2.5" over Impervious Area	9.13	1.90	0.00	1.90
Required Treatment Volume [max(A, I	1.90			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		29.00	2.47	20.66	10.88
Treatment Weir	Provided	25.00	2.00	11.72	1.94
Treatment wen	Required	24.98	2.00	11.68	1.90
Orifice Invert / NWL		24.00	1.88	9.78	0.00
Break		22.00	1.66	6.24	=
Bottom		18.00	1.46	0.00	ı
Sump Top		18.00	1.46	0.00	-
Sump Bottom		18.00	1.46	0.00	-

Recovery Analysis

Treatment	Head, h₁	0.88	T ft
Treatment			
	Elevation	24.52	ft
Recovery	Required Vol.	0.95	ac-f
	Design Vol.	0.95	ac-f
	Head, h ₂	0.39	ft
Mean Value	Head, h _m	0.63	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	6.00	in
	Area, A	0.13	ft ²
	Centerline Elev.	24.13	ft
Flow = (0.6*,	0.48	cfs	
Time to Recover V	olume	24.02	hr

Mean Depth			5.20	ft
T ermanent i ooi		9.78	ac-ft	
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	4.03	ac-ft
Wet Season Rainfall, r	·	·	29.00	in
Wet Season Duration, d			153	days
Residence Time, t		14	days	
Weighted Runoff Coefficient, c	nted Runoff Coefficient, c			
Total		18.97	12.15	
Pervious Open Space	0.20	7.96	1.59	
Impervious	0.95	9.13	8.67	
Water	1.00	1.88	1.88	
	С	Area (ac)	C * Area	

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

 Job No:
 21044753201

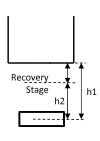
Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 4A & 4B

OFW: FALSE ICPR Scenario: POST

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	25.57	2.13	0.00	2.13
(Criteria B) 2.5" over Impervious Area	11.39	2.37	0.00	2.37
Required Treatment Volume [max(A, I	2.37			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		29.50	4.86	41.48	21.60
Treatment Weir	Provided	25.25	3.94	22.77	2.90
Treatment wen	Required	25.12	3.91	22.25	2.37
Orifice Invert / NWL		24.50	3.78	19.88	0.00
Break		22.50	3.38	12.72	-
Bottom		18,50	2.99	0.00	-
Sump Top	·	18.50	2.99	0.00	-
Sump Bottom		18,50	2.99	0.00	-

Recovery Analysis

			_
Treatment	Head, h₁	0.63	ft
	Elevation	24.95	ft
Recovery	Required Vol.	1.19	ac-f
	Design Vol.	1.19	ac-f
	Head, h ₂	0.32	ft
Mean Value	Head, h _m	0.47	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	8.00	in
	Area, A	0.17	ft ²
	Centerline Elev.	24.63	ft
Flow = (0.6*A	0.55	cfs	
Time to Recover Vo	lume	26.00	hr

	С	Area (ac)	C * Area	
Water	1.00	3.78	3.78	
Impervious	0.95	11.39	10.82	
Pervious Open Space	0.20	10.40	2.08	
Total		25.57	16.68	
Weighted Runoff Coefficient, c		0.65		
Residence Time, t		14	days	
Wet Season Duration, d			153	days
Wet Season Rainfall, r			29.00	in
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	5.53	ac-ft
		19.88	ac-ft	
Mean Depth			5.26	ft

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

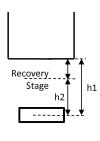
 Job No:
 21044753201

Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 4C OFW: FALSE ICPR Scenario: POST 2

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	31.00	2.58	0.00	2.58
(Criteria B) 2.5" over Impervious Area	14.72	3.07	0.00	3.07
Required Treatment Volume Imax(A.	3.07			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		29.50	5.50	50.92	25.35
Treatment Weir	Provided	25.20	4.76	28.86	3.29
Treatment Wen	Required	25.15	4.75	28.64	3.07
Orifice Invert / NWL		24.50	4.64	25.57	0.00
Break		22.50	4.31	16.62	-
Bottom		18.50	4.00	0.00	-
Sump Top	·	18.50	4.00	0.00	-
Sump Bottom		18.50	4.00	0.00	-

Recovery Analysis

- , ,	Here de la	0.53	٦.,
Treatment	Head, h₁	0.57	ft
Recovery	Elevation	24.88	ft
	Required Vol.	1.53	ac-f
	Design Vol.	1.53	ac-f
	Head, h ₂	0.25	ft
Mean Value	Head, h _m	0.41	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	10.00	in
	Area, A	0.21	ft ²
	Centerline Elev.	24.63	ft
Flow = (0.6*/	0.64	cfs	
Time to Recover V	olume	28.78	hr

	С	Area (ac)	C * Area	
Water	1.00	4.64	4.64	7
Impervious	0.95	14.72	13.98	1
Pervious Open Space	0.20	11.64	2.33	1
Total		31.00	20.95	
Weighted Runoff Coefficient, c		0.68		
Residence Time, t		14	days	
Wet Season Duration, d			153	days
Wet Season Rainfall, r			29.00	in
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	6.95	ac-ft
Permanent Poor		Provided	25.57	ac-ft
Mean Depth			5.51	ft

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

 Job No:
 21044753201

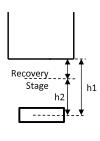
Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 5A & 5B

OFW: FALSE ICPR Scenario: POST

Required Treatment Volume

	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	22.08	1.84	0.00	1.84
(Criteria B) 2.5" over Impervious Area	10.17	2.12	0.00	2.12
Required Treatment Volume [max(A, I	2.12			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

	Ī	Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		30.00	4.22	29.66	17.63
Treatment Weir	Provided	25.75	3.04	14.23	2.20
Treatment weir	Required	25.72	3.03	14.15	2.12
Orifice Invert / NWL		25.00	2.84	12.03	0.00
Break		23.00	2.30	6.90	-
Bottom		19.00	1.16	0.00	-
Sump Top		19.00	1.16	0.00	-
Sump Bottom		19.00	1.16	0.00	_

Recovery Analysis

Treatment	Head, h₁	0.63	ft
	Elevation	25.40	ft
Recovery	Required Vol.	1.06	ac-f
	Design Vol.	1.06	ac-f
	Head, h ₂	0.27	ft
Mean Value	Head, h _m	0.45	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	7.00	in
	Area, A	0.15	ft ²
	Centerline Elev.	25.13	ft
Flow = (0.6	0.47	cfs	
Time to Recover	Time to Recover Volume		

	С	Area (ac)	C * Area	
Water	1.00	2.84	2.84	
Impervious	0.95	10.17	9.66	
Pervious Open Space	0.20	9.07	1.81	
Total		22.08	14.31	
Weighted Runoff Coefficient, c		0.65		
Residence Time, t		14	days	
Wet Season Duration, d			153	days
Wet Season Rainfall, r			29.00	in
Permanent Pool	Required = (Area*	c*r*(t/d))/12*1.5	4.75	ac-ft
Provided			12.03	ac-ft
Mean Depth			4.24	ft

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

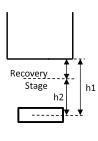
 Job No:
 21044753201

Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 5C OFW: FALSE ICPR Scenario: POST 2

Required Treatment Volume

F	Area	Runoff	OFW Reg.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	39.09	3.26	0.00	3.26
(Criteria B) 2.5" over Impervious Area	18.78	3.91	0.00	3.91
Required Treatment Volume Imax(A.	3.91			


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

		Elevation	Area	Volume	e (ac-ft)
		(ft)	(ac)	Total	Treatment
Berm Front		30.00	6.49	39.59	25.38
Treatment Weir	Provided	26.00	4.23	18.15	3.94
Treatment Wen	Required	25.99	4.22	18.12	3.91
Orifice Invert / NWL		25.00	3.66	14.21	0.00
Break		23.00	2.55	8.00	-
Bottom		19.00	1.45	0.00	-
Sump Top	·	19.00	1.45	0.00	-
Sump Bottom		19.00	1.45	0.00	-

Recovery Analysis

Treatment	Head, h₁	0.88	ft
	Elevation	25.52	ft
Recovery	Required Vol.	1.96	ac-f
	Design Vol.	1.96	ac-f
	Head, h ₂	0.40	ft
Mean Value	Head, h _m	0.64	ft
	Count, n	1	
	Height	3.00	in
Orifice	Width	12.00	in
	Area, A	0.25	ft ²
	Centerline Elev.	25.13	ft
Flow = (0.6	0.96	cfs	
Time to Recover	Time to Recover Volume		

	С	Area (ac)	C * Area	
Water	1.00	3.66	3.66	1
Impervious	0.95	18.78	17.84	1
Pervious Open Space	0.20	16.65	3.33	1
Total		39.09	24.83	
Weighted Runoff Coefficient, c	eighted Runoff Coefficient, c			1
Residence Time, t		14	days	
Wet Season Duration, d		153	days	
Wet Season Rainfall, r		29.00	in	
Permanent Pool	Required = (Area*o	8.24	ac-ft	
Fermanent Fooi		14.21	ac-ft	
Mean Depth			3.88	ft

 Comp. By:
 SS

 Date:
 1/15/2025

 Chk. By:
 VV

 Job No:
 21044753201

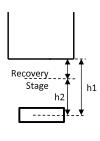
Wet Detention Design Calculations (SJRWMD)

Pond Name: POND 6A & 6B

OFW: FALSE ICPR Scenario: POST

Required Treatment Volume

Γ	Area	Runoff	OFW Req.	Total Runoff
	(ac)	(ac-ft)	(ac-ft)	(ac-ft)
(Criteria A) 1" over Total Area*	17.04	1.42	0.00	1.42
(Criteria B) 2.5" over Impervious Area	8.58	1.79	0.00	1.79
Required Treatment Volume [max(A, B)]				1.79


^{*}Total area includes roadway and pond area.

Wet Detention Pond Geometry

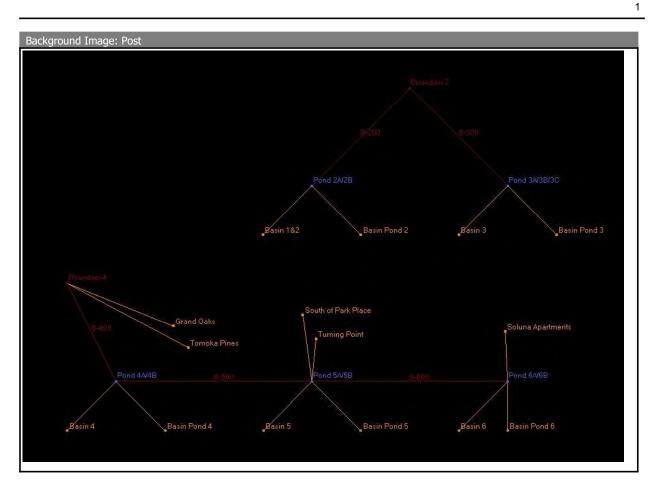
		Elevation	Area	Volume (ac-ft)	
		(ft)	(ac)	Total	Treatment
Berm Front		39.00	2.30	18.58	9.98
Treatment Weir	Provided	35.10	1.82	10.53	1.93
	Required	35.02	1.81	10.39	1.79
Orifice Invert / NWL		34.00	1.69	8.60	0.00
Break		32.00	1.47	5.44	-
Bottom		28.00	1.25	0.00	ı
Sump Top		28.00	1.25	0.00	-
Sump Bottom		28.00	1.25	0.00	-

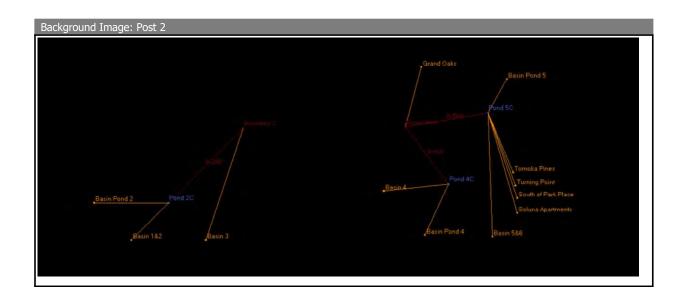
Recovery Analysis

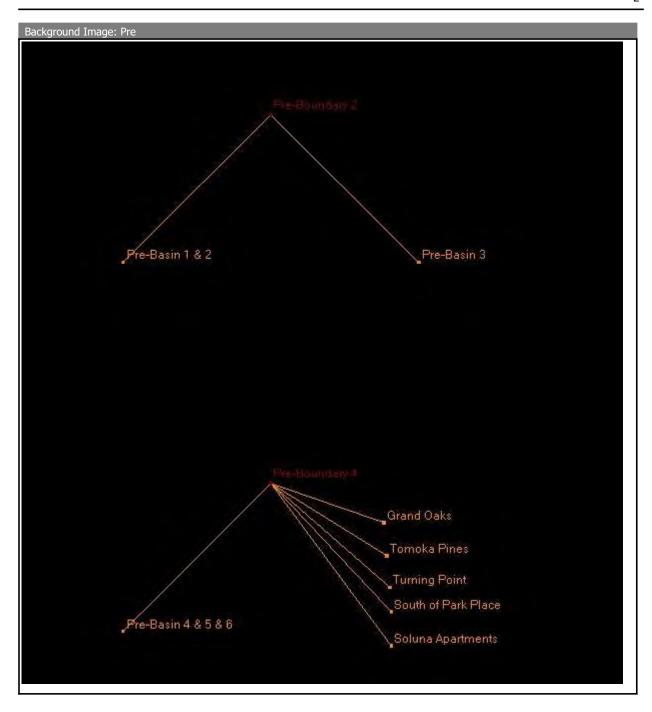
T	llaad b	2.00	٦,
Treatment	Head, h₁	0.98	ft
Recovery	Elevation	34.60	ft
	Required Vol.	0.89	ac-f
Recovery	Design Vol.	0.89	ac-f
	Head, h ₂	0.48	ft
Mean Value	Head, h _m	0.73	ft
	Count, n	1	
Orifice	Height	3.00	in
	Width	4.00	in
	Area, A	0.08	ft ²
	Centerline Elev.	34.13	ft
Flow = $(0.6*A*(2*32.2*h_m)^{0.5})*n$		0.34	cfs
Time to Recover Volume		31.63	hr

	С	Area (ac)	C * Area	
Water	1.00	1.69	1.69	
Impervious	0.95	8.58	8.15	
Pervious Open Space	0.20	6.77	1.35	1
Total		17.04	11.20	
Weighted Runoff Coefficient, c	ed Runoff Coefficient, c			1
Residence Time, t		14	days	
Wet Season Duration, d		153	days	
Wet Season Rainfall, r		29.00	in	
Permanent Pool	Required = (Area*	3.71	ac-ft	
		8.60	ac-ft	
Mean Depth			5.09	ft

Node Max Conditions [Post]


Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
Boundary 2	25 YR 24 HR	22.92	22.92	0.0000	29.48	0.00	0
Boundary 4	25 YR 24 HR	22.92	22.92	0.0000	163.43	0.00	0
Pond 2A/2B	25 YR 24 HR	27.00	25.98	0.0010	71.85	21.64	246650
Pond 3A/3B/3C	25 YR 24 HR	28.00	27.71	0.0010	90.05	8.29	100979
Pond 4A/4B	25 YR 24 HR	28.50	27.70	0.0010	180.95	121.48	194724
Pond 5A/5B	25 YR 24 HR	29.00	28.16	-0.0010	130.50	118.71	161748
Pond 6A/6B	25 YR 24 HR	38.00	37.26	0.0010	49.94	49.10	90964


Node Max Conditions [Post 2]


Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
Boundary 2	25 YR 24 HR	21.40	21.40	0.0000	66.95	0.00	0
Boundary 4	25 YR 24 HR	22.92	22.92	0.0000	181.41	0.00	0
Pond 2C	25 YR 24 HR	24.50	24.02	0.0010	76.42	7.37	392276
Pond 4C	25 YR 24 HR	28.50	27.46	0.0010	161.34	4.39	224266
Pond 5C	25 YR 24 HR	29.00	28.22	0.0010	178.02	173.50	238703

Node Max Conditions [Pre]

Troud Trust Corruitions	[]						
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
Pre-Boundary 2	25 YR4 HR Pre	22.92	22.92	0.0000	71.62	0.00	0
Pre-Boundary 4	25 YR4 HR Pre	22.92	22.92	0.0000	221.82	0.00	0

Manual Basin: Basin 1&2

Scenario: Post

Node: Pond 2A/2B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 125.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 34.9700 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
16.6600	Pervious	D			
18.3100	Impervious	-			

Comment:

Manual Basin: Basin 3

Scenario: Post

Node: Pond 3A/3B/3C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 24.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 16.5000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
7.3700	Pervious	D			
9.1300	Impervious	-			

Comment:

Manual Basin: Basin 4

Scenario: Post

Node: Pond 4A/4B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 16.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 20.7100 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
9.3200	Pervious	D			
11.3900	Impervious	-			

Manual Basin: Basin 5

Scenario: Post

Node: Pond 5A/5B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 21.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 17.8600 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
7.6900	Pervious	D			
10.1700	Impervious	-			

Comment:

Manual Basin: Basin 6

Scenario: Post

Node: Pond 6A/6B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 111.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 14.7400 ac

Area	[ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	6.1600	Pervious	D			
	8.5800	Impervious	-			

Comment:

Manual Basin: Basin Pond 2

Scenario: Post

Node: Pond 2A/2B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0

Area: 6.2400 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
4.8100	Water	-			
1.4300	Pervious	D			

Comment:

Manual Basin: Basin Pond 3

Scenario: Post

Node: Pond 3A/3B/3C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 2.4700 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
1.8800	Water	-			
0.5900	Pervious	D			

Comment:

Manual Basin: Basin Pond 4

Scenario: Post

Node: Pond 4A/4B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH484 Peaking Factor: 484.0 Area: 4.8600 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
3.7800	Water	-			
1.0800	Pervious	D			

Comment:

Manual Basin: Basin Pond 5

Scenario: Post

Node: Pond 5A/5B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number Time of Concentration: 10.0000 min Max Allowable Q: 0.00 cfs Time Shift: 0.0000 hr

Unit Hydrograph: UH484 Peaking Factor: 484.0

Area: 4.2200 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
2.8400	Water	-			
1.3800	Pervious	D			

Comment:

Manual Basin: Basin Pond 6

Scenario: Post

Node: Pond 6A/6B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number Time of Concentration: 10.0000 min Max Allowable Q: 0.00 cfs Time Shift: 0.0000 hr

Unit Hydrograph: UH484 Peaking Factor: 484.0

Area: 2.3000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
1.6900	Water	-			
0.6100	Pervious	D			

Comment:

Manual Basin: Grand Oaks

Scenario: Post

Node: Boundary 4

Area: 15.0800 ac

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 37.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

ı	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
L					Zone	Station
Γ	0.0100	URBAN AND	B/D			
L		BUILT-UP B/D				
	13.8500	AGRICULTURE A/D	A/D			
	1.2200	AGRICULTURE B/D	B/D			

Comment:

Manual Basin: Soluna Apartments

Scenario: Post

Node: Pond 6A/6B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 400.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 108.2000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
0.0400	URBAN AND	A/D			
	BUILT-UP A/D				
0.0100	URBAN AND	B/D			
	BUILT-UP B/D				
22.8800	UPLAND FORESTS	A/D			
	A/D				
29.9500	UPLAND FORESTS	B/D			
	B/D				
3.0100	Water	-			
0.3000	Water	-			
42.1600	WETLANDS A/D	A/D			
9.7500	WETLANDS B/D	B/D			
0.0600	TRANSPORTATION,	A/D			
	COMMUNICATION				

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	AND UTILITIES A/D				
0.0400	TRANSPORTATION,	B/D			
	COMMUNICATION				
	AND UTILITIES B/D				

Manual Basin: South of Park Place

Scenario: Post

Node: Pond 5A/5B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 384.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area: 124.8300 ac

Alea. 124,0300 dc					
Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
9.7500	URBAN AND	A/D			
	BUILT-UP A/D				
1.4200	URBAN AND	B/D			
	BUILT-UP B/D				
22.7200	AGRICULTURE A/D	A/D			
0.0000	AGRICULTURE B/D	B/D			
0.0100	RANGELAND A	Α			
2.7100	RANGELAND A/D	A/D			
2.8300	RANGELAND B/D	B/D			
1.5000	UPLAND FORESTS	Α			
	Α				
31.9400	UPLAND FORESTS	A/D			
	A/D				
24.6500	UPLAND FORESTS	B/D			
	B/D				
2.8600	UPLAND FORESTS	C/D			
	C/D				
7.8400	WETLANDS A	Α			
4.8200	WETLANDS A/D	A/D			
5.5900	WETLANDS B/D	B/D			
5.7000	WETLANDS C/D	C/D			
0.3400	TRANSPORTATION,	A/D			
	COMMUNICATION				
	AND UTILITIES A/D				
0.1500	TRANSPORTATION,	B/D			

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	COMMUNICATION				
	AND UTILITIES B/D				

Manual Basin: Tomoka Pines

Scenario: Post

Node: Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 249.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH256 Peaking Factor: 256.0

Area: 82.3400 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
17.2700	URBAN AND BUILT-UP A/D	A/D			
38.7700	UPLAND FORESTS A/D	A/D			
2.5100	UPLAND FORESTS B/D	B/D			
23.3200	WETLANDS A/D	A/D			
0.4700	WETLANDS B/D	B/D			

Comment:

Manual Basin: Turning Point

Scenario: Post

Node: Pond 5A/5B

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 227.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 37.8500 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
16.8200	URBAN AND	A/D			

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	BUILT-UP A/D				
4.6900	UPLAND FORESTS	A/D			
	A/D				
4.7200	UPLAND FORESTS	B/D			
	B/D				
8.1000	WETLANDS A/D	A/D			
3.5200	WETLANDS B/D	B/D			

Manual Basin: Basin 1&2

Scenario: Post 2 Node: Pond 2C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 125.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 34.9700 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
16.6600	Pervious	D			
18.3100	Impervious	-			

Comment:

Manual Basin: Basin 3

Scenario: Post 2

Node: Boundary 2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 24.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 13.5000 ac

	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
I	6.0300	Pervious	D			
I	7.4700	Impervious	-			

Comment: Moved 3 acres from basin 3 to basin 4 to meet pre-post flow at boundary 2.

Manual Basin: Basin 4

Scenario: Post 2

Node: Pond 4C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 16.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr
Unit Hydrograph: UH484

Peaking Factor: 484.0 Area: 23.7100 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
10.6600	Pervious	D			
13.0500	Impervious	-			

Comment: Moved 3 acres from basin 3 to basin 4 to meet pre-post flow at boundary 2.

Manual Basin: Basin 5&6

Scenario: Post 2 Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 127.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 32.6000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
13.8200	Pervious	D			
18.7800	Impervious	-			

Comment:

Manual Basin: Basin Pond 2

Scenario: Post 2 Node: Pond 2C Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr
Unit Hydrograph: UH484

Peaking Factor: 484.0 Area: 9.5400 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
8.1000	Water	-			
1.4400	Pervious	D			

Comment:

Manual Basin: Basin Pond 4

Scenario: Post 2

Node: Pond 4C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 5.5000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
4.6400	Water	-			
0.8600	Pervious	D			

Comment:

Manual Basin: Basin Pond 5

Scenario: Post 2

Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 10.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 6.4900 ac

Area [ac] Land Cover Zone Soil Zone Rainfall Name Crop Coefficient Reference ET

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
3.6600	Water	-			
2.8300	Pervious	D			

Manual Basin: Grand Oaks

Scenario: Post 2

Node: Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 37.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 15.0800 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
0.0100	URBAN AND	B/D			
	BUILT-UP B/D				
13.8500	AGRICULTURE A/D	A/D			
1.2200	AGRICULTURE B/D	B/D			

Comment:

Manual Basin: Soluna Apartments

Scenario: Post 2

Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 400.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 108.2000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
0.0400	URBAN AND	A/D			
	BUILT-UP A/D				
0.0100	URBAN AND	B/D			
	BUILT-UP B/D				
22.8800	UPLAND FORESTS	A/D			

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	A/D				
29.9500	UPLAND FORESTS	B/D			
	B/D				
3.0100	Water	ı			
0.3000	Water	1			
42.1600	WETLANDS A/D	A/D			
9.7500	WETLANDS B/D	B/D			
0.0600	TRANSPORTATION,	A/D			
	COMMUNICATION				
	AND UTILITIES A/D				
0.0400	TRANSPORTATION,	B/D			
	COMMUNICATION				
	AND UTILITIES B/D				

Manual Basin: South of Park Place

Scenario: Post 2

Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 384.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0

	Area: 124.8300 ac						
Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station		
9.7500	URBAN AND	A/D					
	BUILT-UP A/D						
1.4200	URBAN AND	B/D					
	BUILT-UP B/D						
22.7200	AGRICULTURE A/D	A/D					
0.0000	AGRICULTURE B/D	B/D					
0.0100	RANGELAND A	Α					
2.7100	RANGELAND A/D	A/D					
2.8300	RANGELAND B/D	B/D					
1.5000	UPLAND FORESTS	Α					
	Α						
31.9400	UPLAND FORESTS	A/D					
	A/D						
24.6500	UPLAND FORESTS	B/D					
	B/D						
2.8600	UPLAND FORESTS	C/D					

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
	C/D			20110	Station
7.8400	WETLANDS A	Α			
4.8200	WETLANDS A/D	A/D			
5.5900	WETLANDS B/D	B/D			
5.7000	WETLANDS C/D	C/D			
0.3400	TRANSPORTATION,	A/D			
	COMMUNICATION				
	AND UTILITIES A/D				
0.1500	TRANSPORTATION,	B/D			
	COMMUNICATION				
	AND UTILITIES B/D				

Manual Basin: Tomoka Pines

Scenario: Post 2 Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 249.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 82.3400 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
17.2700	URBAN AND	A/D			
	BUILT-UP A/D				
38.7700	UPLAND FORESTS	A/D			
	A/D				
2.5100	UPLAND FORESTS	B/D			
	B/D				
23.3200	WETLANDS A/D	A/D			
0.4700	WETLANDS B/D	B/D			

Comment:

Manual Basin: Turning Point

Scenario: Post 2 Node: Pond 5C

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number

Time of Concentration: 227.0000 min

Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 37.8500 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
16.8200	URBAN AND	A/D			
	BUILT-UP A/D				
4.6900	UPLAND FORESTS	A/D			
	A/D				
4.7200	UPLAND FORESTS	B/D			
	B/D				
8.1000	WETLANDS A/D	A/D			
3.5200	WETLANDS B/D	B/D			

Comment:

Manual Basin: Grand Oaks

Scenario: Pre

Node: Pre-Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 65.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 15.0800 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
0.0100	URBAN AND BUILT-UP B/D	B/D			
13.8500	AGRICULTURE A/D	A/D			
1.2200	AGRICULTURE B/D	B/D			

Comment:

Manual Basin: Pre-Basin 1 & 2

Scenario: Pre

Node: Pre-Boundary 2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number Time of Concentration: 184.0000 min

Max Allowable Q: 0.00 cfs Time Shift: 0.0000 hr Unit Hydrograph: UH484

Peaking Factor: 484.0 Area: 34.9700 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
27.1700	Pervious	D			
7.8000	Impervious	-			

Comment:

Manual Basin: Pre-Basin 3

Scenario: Pre

Node: Pre-Boundary 2

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 83.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH484
Peaking Factor: 484.0
Area: 16.5000 ac

	Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
I	13.2300	Pervious	D			
l	3.2700	Impervious	-			

Comment:

Manual Basin: Pre-Basin 4 & 5 & 6

Scenario: Pre

Node: Pre-Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 234.0000 min
Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr Unit Hydrograph: UH484 Peaking Factor: 484.0

Area: 53.3200 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
40.5300	Pervious	D			
12.7900	Impervious	-			

_					_ 1	_
n	m	۱r	n	PI	nı	Г

Manual Basin: Soluna Apartments

Scenario: Pre

Node: Pre-Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 400.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256 Peaking Factor: 256.0

Area: 108.2000 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
0.0400	URBAN AND	A/D			
	BUILT-UP A/D				
0.0100	URBAN AND	B/D			
	BUILT-UP B/D				
22.8800	UPLAND FORESTS	A/D			
	A/D				
29.9500	UPLAND FORESTS	B/D			
	B/D				
3.0100	Water				
0.3000	Water	-			
42.1600	WETLANDS A/D	A/D			
9.7500	WETLANDS B/D	B/D			
0.0600	TRANSPORTATION,	A/D			
	COMMUNICATION				
	AND UTILITIES A/D				
0.0400	TRANSPORTATION,	B/D			
	COMMUNICATION				
	AND UTILITIES B/D				

Comment:

Manual Basin: South of Park Place

Scenario: Pre

Node: Pre-Boundary 4
Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 384.0000 min
Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr

Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 124.8300 ac

Area: 124.8300 ac					
Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
				Zone	Station
9.7500	urban and	A/D			
	BUILT-UP A/D				
1.4200	URBAN AND	B/D			
	BUILT-UP B/D				
22.7200	AGRICULTURE A/D	A/D			
0.0000	AGRICULTURE B/D	B/D			
0.0100	RANGELAND A	Α			
2.7100	RANGELAND A/D	A/D			
2.8300	RANGELAND B/D	B/D			
1.5000	UPLAND FORESTS	Α			
	Α				
31.9400	UPLAND FORESTS	A/D			
	A/D				
24.6500	UPLAND FORESTS	B/D			
	B/D				
2.8600	UPLAND FORESTS	C/D			
	C/D				
7.8400	WETLANDS A	Α			
4.8200	WETLANDS A/D	A/D			
5.5900	WETLANDS B/D	B/D			
5.7000	WETLANDS C/D	C/D			
0.3400	TRANSPORTATION,	A/D			
	COMMUNICATION				
	AND UTILITIES A/D				
0.1500	TRANSPORTATION,	B/D			
	COMMUNICATION				
	AND UTILITIES B/D				

I Comment:		

Manual Basin: Tomoka Pines

Scenario: Pre

Node: Pre-Boundary 4

Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number Time of Concentration: 249.0000 min Max Allowable Q: 0.00 cfs

Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0
Area: 82.3400 ac

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET

Area [ac]	Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient Zone	Reference ET Station
17.2700	URBAN AND	A/D			
	BUILT-UP A/D				
38.7700	UPLAND FORESTS	A/D			
	A/D				
2.5100	UPLAND FORESTS	B/D			
	B/D				
23.3200	WETLANDS A/D	A/D			
0.4700	WETLANDS B/D	B/D			

Manual Basin: Turning Point

Scenario: Pre

Node: Pre-Boundary 4
Hydrograph Method: NRCS Unit Hydrograph

Infiltration Method: Curve Number
Time of Concentration: 227.0000 min

Max Allowable Q: 0.00 cfs
Time Shift: 0.0000 hr
Unit Hydrograph: UH256
Peaking Factor: 256.0

Area: 37.8500 ac

Land Cover Zone	Soil Zone	Rainfall Name	Crop Coefficient	Reference ET
			Zone	Station
URBAN AND	A/D			
BUILT-UP A/D				
UPLAND FORESTS	A/D			
A/D				
UPLAND FORESTS	B/D			
B/D				
WETLANDS A/D	A/D			
WETLANDS B/D	B/D			
	URBAN AND BUILT-UP A/D UPLAND FORESTS A/D UPLAND FORESTS B/D WETLANDS A/D	URBAN AND A/D BUILT-UP A/D UPLAND FORESTS A/D A/D UPLAND FORESTS B/D B/D WETLANDS A/D A/D	URBAN AND A/D BUILT-UP A/D UPLAND FORESTS A/D UPLAND FORESTS B/D UPLAND FORESTS B/D WETLANDS A/D A/D	URBAN AND A/D BUILT-UP A/D UPLAND FORESTS A/D UPLAND FORESTS B/D B/D WETLANDS A/D A/D

Comment:

Node: Boundary 2

Scenario: Post
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 22.92 ft
Warning Stage: 22.92 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	22.92
0	0	0	30.0000	22.92

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Node: Boundary 4

Scenario: Post
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 22.92 ft
Warning Stage: 22.92 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	22.92
0	0	0	30.0000	22.92

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Node: Pond 2A/2B

Scenario: Post
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 23.00 ft
Warning Stage: 27.00 ft

Stage [ft]	Area [ac]	Area [ft2]
28.00	6.2400	271814
23.00	4.8100	209524
21.00	4.2600	185566
17.00	3.7100	161608

Comment:

Node: Pond 3A/3B/3C

Scenario: Post
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 24.00 ft
Warning Stage: 28.00 ft

Stage [ft]	Area [ac]	Area [ft2]
29.00	2.4700	107593
24.00	1.8800	81893
22.00	1.6600	72310
18.00	1.4600	63598

Node: Pond 4A/4B

Scenario: Post
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 24.50 ft
Warning Stage: 28.50 ft

Stage [ft]	Area [ac]	Area [ft2]
29.50	4.8600	211702
24.50	3.7800	164657
22.50	3.3800	147233
18.50	2.9900	130244

Comment:

Node: Pond 5A/5B

Scenario: Post
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 25.00 ft
Warning Stage: 29.00 ft

Stage [ft]	Area [ac]	Area [ft2]
30.00	4.2200	183823
25.00	2.8400	123710
23.00	2.3000	100188
19.00	1.1600	50530

Comment:

Node: Pond 6A/6B

Scenario: Post Type: Stage/Area Base Flow: 0.00 cfs Initial Stage: 34.00 ft Warning Stage: 38.00 ft

Stage [ft]	Area [ac]	Area [ft2]
39.00	2.3000	100188
34.00	1.6900	73616
32.00	1.4700	64033
28.00	1.2500	54450

Comment:

Node: Boundary 2

Scenario: Post 2
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 21.40 ft
Warning Stage: 21.40 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	21.40
0	0	0	30.0000	21.40

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Node: Boundary 4

Scenario: Post 2
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 22.92 ft
Warning Stage: 22.92 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	22.92
0	0	0	30.0000	22.92

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Node: Pond 2C

Scenario: Post 2 Type: Stage/Area Base Flow: 0.00 cfs Initial Stage: 21.50 ft Warning Stage: 24.50 ft

Stage [ft]	Area [ac]	Area [ft2]
25.50	9.5400	415562
21.50	8.1000	352836
19.50	7.5400	328442
18.00	6.9900	304484

Comment:

Node: Pond 4C

Scenario: Post 2
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 24.50 ft
Warning Stage: 28.50 ft

Stage [ft]	Area [ac]	Area [ft2]
29.50	5.5000	239580
24.50	4.6400	202118
22.50	4.3100	187744
18.50	4.0000	174240

Comment:

Node: Pond 5C

Scenario: Post 2
Type: Stage/Area
Base Flow: 0.00 cfs
Initial Stage: 25.00 ft
Warning Stage: 29.00 ft

Stage [ft]	Area [ac]	Area [ft2]
30.00	6.4900	282704
25.00	3.6600	159430
23.00	2.5500	111078
19.00	1.4500	63162

Comment:

Node: Pre-Boundary 2

Scenario: Pre
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 22.92 ft
Warning Stage: 22.92 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	22.92
0	0	0	30.0000	22.92

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Node: Pre-Boundary 4

Scenario: Pre
Type: Time/Stage
Base Flow: 0.00 cfs
Initial Stage: 22.92 ft
Warning Stage: 22.92 ft

Boundary Stage:

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	22.92
0	0	0	30.0000	22.92

Comment: 25-yr Stage Extrapolated from FEMA FIS 12109CV004D 50 and 10yr

Drop Structure Link:	S-200		am Pipe	Downst	ream Pipe
Scenario:	Post	Invert:	20.00 ft	Invert:	<u> </u>
From Node:	Pond 2A/2B	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Boundary 2	Geometry	/: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	3.00 ft	Max Depth:	3.00 ft
Flow Direction:	Both			Bottom Clip	
Solution:	Combine	Default:	0.00 ft	Default:	0.00 ft
Increments:	0	Op Table:		Op Table:	
Pipe Count:	1	Ref Node:		Ref Node:	
Damping:	0.0000 ft	Manning's N:	0.0000	Manning's N:	0.0000
Length:	618.00 ft			Top Clip	
FHWA Code:	0	Default:	0.00 ft	Default:	0.00 ft
Entr Loss Coef:	0.00	Op Table:		Op Table:	
Exit Loss Coef:	0.00	Ref Node:		Ref Node:	
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Bend Location:	0.00 dec				
Energy Switch:	Energy				

Pipe Comment:

 Weir Component

 Weir:
 1
 Bottom Clip

 Weir Count:
 1
 Default:
 0.00 ft

 Weir Flow Direction:
 Both
 Op Table:
 Op Table:

 Damping:
 0.0000 ft
 Ref Node:
 Top Clip

 Weir Type:
 Sharp Crested Vertical
 Top Clip

Weir Type: Snarp Crested Vertical Top Clip

Geometry Type: Rectangular Default: 0.00 ft

Invert: 23.00 ft Op Table:

Control Flovation: 23.00 ft

Control Elevation: 23.00 ft Ref Node:

Max Depth: 0.25 ft Discharge Coefficients

Max Width: 0.83 ft Weir Default: 3.200
Fillet: 0.00 ft Weir Table:
Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 2
Weir Count: 1
Default: 0.00 ft
Weir Flow Direction: Both
Op Table:

Damping: 0.0000 ft Ref Node:

Weir Type: Sharp Crested Vertical Top Clip

Geometry Type: Rectangular Default: 0.00 ft

Invert: 24.00 ft Op Table:

Control Elevation: 24.00 ft Ref Node:

Max Depth: 3.00 ft Discharge Coefficients

Max Width: 2.25 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table:

Orifice Default: 0.600
Orifice Table:

Weir Comment:

Weir Component
Weir: 3 Bottom Clip

Weir Count: 1 Default: 0.00 ft
Weir Flow Direction: Both Op Table:

Damping: 0.0000 ft Ref Node:
Weir Type: Horizontal Top Clip

Geometry Type: Rectangular Default: 0.00 ft
Invert: 27.00 ft Op Table:
Control Elevation: 27.00 ft Ref Node:

Fillet: 0.00 ft

Max Depth: 3.08 ft Discharge Coefficients

Max Width: 4.08 ft Weir Default: 3.200

Orifice Default: 0.600
Orifice Table:

Weir Table:

Weir Comment:

Drop Structure Comment:

					_
Drop Structure Link:	S-300	Upstrea	am Pipe	Downst	ream Pipe
Scenario:	Post	Invert:	21.00 ft	Invert:	19.00 ft
From Node:	Pond 3A/3B/3C	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Boundary 2	Geometry	/: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	3.00 ft	Max Depth:	3.00 ft
Flow Direction:	Both			Bottom Clip	
Solution:	Combine	Default:	0.00 ft	Default:	0.00 ft
Increments:	0	Op Table:		Op Table:	
Pipe Count:	1	Ref Node:		Ref Node:	
Damping:	0.0000 ft	Manning's N:	0.0000	Manning's N:	0.0000
Length:	516.00 ft			Top Clip	
FHWA Code:	0	Default:	0.00 ft	Default:	0.00 ft
Entr Loss Coef:	0.00	Op Table:		Op Table:	
Exit Loss Coef:	0.00	Ref Node:		Ref Node:	
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Bend Location:	0.00 dec				
Energy Switch:	Energy				
Pipe Comment:					

Weir Co	mponent		
Weir:	1	Botto	m Clip
Weir Count:	1	Default:	0.00 ft
Weir Flow Direction:	Both	Op Table:	
Damping:	0.0000 ft	Ref Node:	
Weir Type:	Sharp Crested Vertical	Тор	Clip
Geometry Type:	Rectangular	Default:	0.00 ft
Invert:	24.00 ft	Op Table:	
Control Elevation:	24.00 ft	Ref Node:	
Max Depth:	0.25 ft	Discharge	Coefficients
Max Width:	0.50 ft	Weir Default:	3.200
Fillet:	0.00 ft	Weir Table:	
		Orifice Default:	0.600
		Orifice Table:	

Weir Comment:

Weir Co	mponent	
Weir:	2	Bottom Clip
Weir Count:	1	Default: 0.00 ft
Weir Flow Direction:	Both	Op Table:
Damping:	0.0000 ft	Ref Node:
Weir Type:	Sharp Crested Vertical	Top Clip
Weir Type: Geometry Type:	·	Top Clip Default: 0.00 ft
Geometry Type:	·	
Geometry Type:	Rectangular 25.00 ft	Default: 0.00 ft

Max Width: 0.50 ft

Fillet: 0.00 ft

Weir Default: 3.200

Weir Table:
Orifice Default: 0.600
Orifice Table:

Weir Comment:

Weir Component
Weir: 3
Bottom Cli

Weir: 3 Bottom Clip
Count: 1 Default: 0.00 ft

Weir Count: 1 Default: 0.0 Weir Flow Direction: Both Op Table:

Damping: 0.0000 ft Ref Node:
Weir Type: Horizontal Top

Weir Type:HorizontalTop ClipGeometry Type:RectangularDefault:0.00 ft

Invert: 28.00 ft Op Table:
Control Elevation: 28.00 ft Ref Node:

Max Depth:3.08 ftDischarge CoefficientsMax Width:4.08 ftWeir Default:3.200

Fillet: 0.00 ft Weir Table:
Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link:	S-400	Upstrea	am Pipe	Dov	vnstream Pipe
Scenario:	Post	Invert:	21.50 ft	Inv	ert: 21.00 ft
From Node:	Pond 4A/4B	Manning's N:	0.0120	Manning'	s N: 0.0120
To Node:	Boundary 4	Geometry	/: Circular	Geo	metry: Circular
Link Count:	1	Max Depth:	5.00 ft	Max De	pth: 5.00 ft
Flow Direction:	Both			Bottom Clip	
Solution:	Combine	Default:	0.00 ft	Defa	ault: 0.00 ft
Increments:	0	Op Table:		Op Ta	ble:
Pipe Count:	1	Ref Node:		Ref No	ode:
Damping:	0.0000 ft	Manning's N:	0.0000	Manning'	s N: 0.0000
Length:	327.00 ft			Top Clip	
FHWA Code:	0	Default:	0.00 ft	Defa	ault: 0.00 ft
Entr Loss Coef:	0.00	Op Table:		Op Ta	ble:
Exit Loss Coef:	0.00	Ref Node:		Ref No	ode:
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning'	s N: 0.0000
Bend Location:	0.00 dec				
Energy Switch:	Energy				
Pipe Comment:					

Weir Component
Weir: 1 Bottom Clip
Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 24.50 ft Control Elevation: 24.50 ft

Max Depth: 0.25 ft Max Width: 0.67 ft Fillet: 0.00 ft Op Table: Ref Node:

Top Clip

Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:

Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 2

Weir Count: 1
Weir Flow Direction: Both

Damping: 0.0000 ft

Damping. 0.0000 it

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 25.25 ft Control Elevation: 25.25 ft

Max Depth: 3.25 ft

Max Width: 10.00 ft

Fillet: 0.00 ft

Bottom Clip

Default: 0.00 ft

Op Table: Ref Node:

Top Clip

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:
Orifice Default: 0.600

- . - . .

Orifice Table:

Weir Comment:

Weir Component

Weir: 3

Weir Count: 1

Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Horizontal

Geometry Type: Rectangular

Invert: 28.50 ft

Control Elevation: 28.50 ft

Max Depth: 3.08 ft

Max Width: 4.08 ft Fillet: 0.00 ft Bottom Clip

Default: 0.00 ft

Op Table:

Ref Node:

Top Clip

Default: 0.00 ft

Op Table:

Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:

Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link:	S-500	Upstrea	am Pipe	Downst	ream Pipe
Scenario:	Post	Invert:	22.00 ft	Invert	20.00 ft
From Node:	Pond 5A/5B	Manning's N:	0.0120	Manning's N	0.0120
To Node:	Pond 4A/4B	Geometry	: Circular	Geomet	ry: Circular
Link Count:	1	Max Depth:	5.00 ft	Max Depth	5.00 ft
Flow Direction:	Both			Bottom Clip	
Solution:	Combine	Default:	0.00 ft	Default	0.00 ft
Increments:	0	Op Table:		Op Table	
Pipe Count:	5	Ref Node:		Ref Node	
Damping:	0.0000 ft	Manning's N:	0.0000	Manning's N	0.0000
Length:	2839.00 ft			Top Clip	
FHWA Code:	0	Default:	0.00 ft	Default	0.00 ft
Entr Loss Coef:	0.00	Op Table:		Op Table	
Exit Loss Coef:	0.00	Ref Node:		Ref Node	
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning's N	0.0000
Bend Location:	0.00 dec				
Energy Switch:	Energy				
Pipe Comment:		-			

Weir Co	mponent		
Weir:	1	Bottom C	lip
Weir Count:	1	Default: 0.0	00 ft
Weir Flow Direction:	Both	Op Table:	
Damping:	0.0000 ft	Ref Node:	
Weir Type:	Sharp Crested Vertical	Top Clip	þ
Geometry Type:	Rectangular	Default: 0.0	00 ft
Invert:	25.00 ft	Op Table:	
Control Elevation:	25.00 ft	Ref Node:	
Max Depth:	0.25 ft	Discharge Coe	fficients
Max Width:	0.58 ft	Weir Default: 3.2	200
Fillet:	0.00 ft	Weir Table:	
		Orifice Default: 0.0	600
		Orifice Table:	

Weir Component Weir: 2 Bottom Clip Weir Count: 1 Default: 0.00 ft Weir Flow Direction: Both Op Table: Damping: 0.0000 ft Ref Node: Weir Type: Sharp Crested Vertical Top Clip Geometry Type: Rectangular Default: 0.00 ft Invert: 25.75 ft Op Table: Control Elevation: 25.75 ft Ref Node: Max Depth: 3.25 ft Discharge Coefficients Max Width: 22.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: Weir Comment:

Weir Component

Weir: 3 Weir Count: 1 Weir Flow Direction: Both

Damping: 0.0000 ft Weir Type: Horizontal

Geometry Type: Rectangular Invert: 29.00 ft

Control Elevation: 29.00 ft Max Depth: 3.08 ft Max Width: 4.08 ft

Fillet: 0.00 ft

Bottom Clip Default: 0.00 ft

Op Table: Ref Node:

> Top Clip Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients Weir Default: 3.200

Weir Table:

Orifice Default: 0.600 Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link: S-600 Upstream Pipe Downstream Pipe Scenario: Invert: 31.00 ft Invert:

22.00 ft From Node: Pond 6A/6B Manning's N: 0.0120 Manning's N: 0.0120 To Node: Pond 5A/5B Geometry: Circular Geometry: Circular Max Depth: 5.00 ft

Default:

Op Table:

Ref Node:

Op Table:

Manning's N:

0.00 ft

0.0000

Default: 0.00 ft

Link Count: 1 Flow Direction: Both Solution: Combine

Increments: 0 Pipe Count: 1 Damping: 0.0000 ft

Length: 3606.00 ft FHWA Code: 0

Entr Loss Coef: 0.00 Exit Loss Coef: 0.00 Bend Loss Coef: 0.00

Bend Location: 0.00 dec Energy Switch: Energy Pipe Comment:

Ref Node: Manning's N: 0.0000 Top Clip

Bottom Clip

Op Table: Ref Node:

Op Table:

Ref Node:

Manning's N:

Manning's N: 0.0000

Max Depth: 5.00 ft

Default: 0.00 ft

Default: 0.00 ft

0.0000

Weir Component

Weir: 1 Bottom Clip Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 34.00 ft Control Elevation: 34.00 ft

Op Table: Ref Node:

> Top Clip Default: 0.00 ft

Op Table: Ref Node: Max Depth: 0.25 ft Max Width: 0.33 ft Fillet: 0.00 ft

Discharge Coefficients

Weir Default: 3.200 Weir Table:

Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 2

Weir Count: 1
Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 35.10 ft

Control Elevation: 35.10 ft
Max Depth: 2.90 ft

Max Width: 4.75 ft

Fillet: 0.00 ft

Bottom Clip
Default: 0.00 ft

Op Table: Ref Node:

Top Clip
Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200 Weir Table:

Orifice Default: 0.600 Orifice Table:

Weir Comment:

Weir Component

Weir: 3
Weir Count: 1
Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Horizontal

Geometry Type: Rectangular Invert: 38.00 ft

Control Elevation: 38.00 ft

Max Depth: 3.08 ft Max Width: 4.08 ft

Fillet: 0.00 ft

Bottom Clip

Default: 0.00 ft

Op Table: Ref Node:

Top Clip
Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:
Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link: S-200

Scenario: Post 2
From Node: Pond 2C
To Node: Boundary 2

Link Count: 1

Upstream Pipe

Invert: 17.50 ft Manning's N: 0.0120

Geometry: Circular Max Depth: 5.00 ft

Downstream Pipe

Invert: 17.00 ft Manning's N: 0.0120

Geometry: Circular
Max Depth: 5.00 ft

Flow Direction: Both Bottom Clip Solution: Combine Default: 0.00 ft Default: 0.00 ft Op Table: Increments: Op Table: Pipe Count: 1 Ref Node: Ref Node: Damping: 0.0000 ft Manning's N: 0.0000 Manning's N: 0.0000 Length: 196.41 ft Top Clip 0.00 ft FHWA Code: 0 Default: Default: 0.00 ft Entr Loss Coef: 0.00 Op Table: Op Table: Exit Loss Coef: 0.00 Ref Node: Ref Node: Bend Loss Coef: 0.00 Manning's N: 0.0000 Manning's N: 0.0000 Bend Location: 0.00 dec Energy Switch: Energy

Pipe Comment:

Weir Component

Weir: 1 Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both Op Table:

Damping: 0.0000 ft Ref Node:

Weir Type: Sharp Crested Vertical Top Clip Geometry Type: Rectangular Default: 0.00 ft

Invert: 22.00 ft Op Table:

Control Elevation: 22.00 ft Ref Node:

Discharge Coefficients Max Depth: 2.50 ft Max Width: 0.50 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table: Orifice Default: 0.600

Orifice Table:

Bottom Clip

Weir Comment:

Weir Component

Weir: 2 Bottom Clip Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both Op Table: Ref Node: Damping: 0.0000 ft

Weir Type: Horizontal Top Clip Default: 0.00 ft Geometry Type: Rectangular

Invert: 24.50 ft Op Table: Control Elevation: 24.50 ft Ref Node:

Max Depth: 3.08 ft Discharge Coefficients Max Width: 4.08 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table: Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 3 Bottom Clip Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both Op Table: Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 21.50 ft Control Elevation: 21.50 ft Max Depth: 0.25 ft Max Width: 1.50 ft

Fillet: 0.00 ft

Ref Node:

Top Clip

Default: 0.00 ft

Op Table: Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:

Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link: S-400

Upstream Pipe Downstream Pipe

Scenario: Post 2 Invert: 21.50 ft Invert: 21.00 ft From Node: Pond 4C Manning's N: 0.0120 Manning's N: 0.0120

To Node: Boundary 4 Geometry: Circular Geometry: Circular Link Count: 1 Max Depth: Max Depth: 5.00 ft 5.00 ft

Bottom Clip Flow Direction: Both Solution: Combine Default: 0.00 ft Default: 0.00 ft Increments: 0 Op Table: Op Table:

Pipe Count: 1 Ref Node: Ref Node:

Damping: 0.0000 ft Manning's N: 0.0000 Manning's N: 0.0000 Length: 500.00 ft Top Clip

FHWA Code: 0 Default: 0.00 ft Default: 0.00 ft Entr Loss Coef: 0.00 Op Table: Op Table:

Exit Loss Coef: 0.00 Ref Node: Ref Node: Bend Loss Coef: 0.00 Manning's N: 0.0000 Manning's N: 0.0000

Bend Location: 0.00 dec Energy Switch: Energy

Pipe Comment:

Weir Component

Weir: 1 Bottom Clip

Weir Count: 1 Default: 0.00 ft Weir Flow Direction: Both Op Table: Damping: 0.0000 ft Ref Node:

Weir Type: Sharp Crested Vertical

Top Clip Geometry Type: Rectangular Default: 0.00 ft

Invert: 24.50 ft Op Table: Control Elevation: 24.50 ft Ref Node: Max Depth: 0.25 ft Discharge Coefficients

Max Width: 0.83 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table: Orifice Default: 0.600

Orifice Table:

Bottom Clip

Top Clip

Default: 0.00 ft

Weir Comment:

Weir Component

Weir: 2
Weir Count: 1

Weir Flow Direction: Both Op Table:
Damping: 0.0000 ft Ref Node:

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular Default: 0.00 ft

Invert: 25.20 ft Op Table: Control Elevation: 25.20 ft Ref Node:

Max Depth: 3.30 ft Discharge Coefficients

Max Width: 0.25 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table:
Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 3 Bottom Clip
Weir Count: 1 Default: 0.00 ft

Weir Flow Direction: Both Op Table:

Damping: 0.0000 ft Ref Node:
Weir Type: Horizontal Top Clip

Geometry Type: Rectangular Default: 0.00 ft

Invert: 28.50 ft Op Table: Control Elevation: 28.50 ft Ref Node:

Max Depth: 3.08 ft Discharge Coefficients

Max Width: 4.08 ft Weir Default: 3.200

Fillet: 0.00 ft Weir Table:

Orifice Default: 0.600
Orifice Table:

Weir Comment:

Drop Structure Comment:

Drop Structure Link: S-500 Upstream Pipe Downstream Pipe

Scenario:Post 2Invert:22.50 ftInvert:21.50 ftFrom Node:Pond 5CManning's N:0.0120Manning's N:0.0120To Node:Boundary 4Geometry: CircularGeometry: Circular

Link Count: 1 Max Depth: 5.00 ft Max Depth: 5.00 ft
Flow Direction: Both Bottom Clip

Solution: Combine Default: 0.00 ft Default: 0.00 ft

Increments: 0 Op Table: Op Table: Pipe Count: 2 Ref Node: Ref Node:

Manning's N: 0.0000 Damping: 0.0000 ft Manning's N: 0.0000 Length: 1400.00 ft Top Clip FHWA Code: 0 Default: 0.00 ft Default: 0.00 ft Entr Loss Coef: 0.00 Op Table: Op Table: Ref Node: Exit Loss Coef: 0.00 Ref Node: Manning's N: 0.0000 Bend Loss Coef: 0.00 Manning's N: 0.0000 Bend Location: 0.00 dec Energy Switch: Energy

Pipe Comment:

Weir Component

Weir: 1 Weir Count: 1 Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular

Invert: 25.00 ft Control Elevation: 25.00 ft Max Depth: 0.25 ft

Max Width: 1.00 ft Fillet: 0.00 ft Bottom Clip

Default: 0.00 ft Op Table: Ref Node:

Top Clip Default: 0.00 ft Op Table:

Ref Node: Discharge Coefficients

Weir Default: 3.200 Weir Table: Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 2 Weir Count: 1 Weir Flow Direction: Both

Damping: 0.0000 ft

Weir Type: Sharp Crested Vertical

Geometry Type: Rectangular Invert: 26.00 ft

Control Elevation: 26.00 ft

Max Width: 18.00 ft Fillet: 0.00 ft

Max Depth: 3.00 ft

Bottom Clip

Default: 0.00 ft Op Table: Ref Node:

Top Clip

Default: 0.00 ft Op Table: Ref Node:

Discharge Coefficients Weir Default: 3.200

Weir Table: Orifice Default: 0.600

Orifice Table:

Weir Comment:

Weir Component

Weir: 3 Weir Count: 1 Weir Flow Direction: Both Damping: 0.0000 ft Weir Type: Horizontal

> Geometry Type: Rectangular Invert: 29.00 ft

Bottom Clip

Top Clip

Default: 0.00 ft Op Table: Ref Node:

Default: 0.00 ft

Op Table:

Control Elevation: 29.00 ft

Max Depth: 3.08 ft Max Width: 4.08 ft

Fillet: 0.00 ft

Ref Node:

Discharge Coefficients

Weir Default: 3.200

Weir Table:

Orifice Default: 0.600

Orifice Table:

Weir Comment:

Drop Structure Comment:

Simulation: 25 YR 24 HR

Scenario: Post

Run Date/Time: 1/15/2025 12:02:12 PM

Program Version: ICPR4 4.07.08

General

Run Mode: Normal

 Year
 Month
 Day
 Hour [hr]

 Start Time:
 0
 0
 0
 0.0000

 End Time:
 0
 0
 0
 30.0000

Hydrology [sec] Surface Hydraulics Groundwater [sec] [sec]

Min Calculation Time: 60.0000 0.1000 900.0000

Max Calculation Time: 30.0000

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	60.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: CURVE NUMBER

Green-Ampt Set: Vertical Layers Set:

Impervious Set: IMPERVIOUS

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr
Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Edge Length Option: Automatic

(2D):

Fact:

dZ Tolerance: 0.0010 ft Smp/Man Basin Rain Global

Opt:

Max dZ: 1.0000 ft OF Region Rain Opt: Global Link Optimizer Tol: 0.0001 ft Rainfall Name: ~FLMOD

Rainfall Amount: 8.60 in Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 25 YR 24 HR

Scenario: Post 2
Run Date/Time: N/A
Program Version: N/A

General

Run Mode: Normal

 Year
 Month
 Day
 Hour [hr]

 Start Time:
 0
 0
 0
 0.0000

0 0 30.0000 End Time: 0

> Hydrology [sec] Surface Hydraulics Groundwater [sec] [sec]

Min Calculation Time: 60.0000 0.1000 900.0000

Max Calculation Time: 30.0000

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15,0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	60.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: CURVE NUMBER

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: **IMPERVIOUS**

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft

ET for Manual Basins: False

Smp/Man Basin Rain Global

Opt:

Max dZ: 1.0000 ft OF Region Rain Opt: Global

Link Optimizer Tol: 0.0001 ft Rainfall Name: \sim FLMOD Rainfall Amount: 8.60 in

Edge Length Option: Automatic Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2
Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(2D): (1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Comment:

Simulation: 25 YR4 HR Pre

Scenario: Pre Run Date/Time: N/A Program Version: N/A

General

Run Mode: Normal

	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000

	Hydrology [sec]	Surface Hydraulics [sec]	Groundwater [sec]
Min Calculation Time:	60.0000	0.1000	900.0000

Max Calculation Time: 30.0000

Output Time Increments

Hydrology

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Surface Hydraulics

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

Groundwater

Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	60.0000

Restart File

Save Restart: False

Resources & Lookup Tables

Resources

Rainfall Folder: Reference ET Folder: Unit Hydrograph Folder: Lookup Tables

Boundary Stage Set: Extern Hydrograph Set:

Curve Number Set: CURVE NUMBER

Green-Ampt Set:

Vertical Layers Set:

Impervious Set: IMPERVIOUS

Roughness Set: Crop Coef Set: Fillable Porosity Set: Conductivity Set: Leakage Set:

Tolerances & Options

Time Marching: SAOR IA Recovery Time: 24.0000 hr
Max Iterations: 6 ET for Manual Basins: False

Over-Relax Weight 0.5 dec

Fact:

dZ Tolerance: 0.0010 ft Smp/Man Basin Rain Global

Opt:

Rainfall Amount: 8.60 in

Edge Length Option: Automatic Storm Duration: 24.0000 hr

Dflt Damping (2D): 0.0050 ft
Min Node Srf Area 100 ft2

Dflt Damping (1D): 0.0050 ft
Min Node Srf Area 100 ft2

(1D):

Energy Switch (2D): Energy Energy Switch (1D): Energy

Curve Number: CURVE NUMBER [Set]

Comment:

(2D):

Land Cover Zone	Soil Zone	Curve Number [dec]
AGRICULTURE A/D	A/D	80.0
AGRICULTURE B/D	B/D	80.0
Coniferous Plantations	D	79.0
Impervious	-	100.0
Pasture	D	89.0

Land Cover Zone	Soil Zone	Curve Number [dec]
Pervious	D	80.0
RANGELAND A	A	35.0
RANGELAND A/D	A/D	77.0
RANGELAND B/D	B/D	77.0
TRANSPORTATION, COMMUNICATION AND UTILITIES A/D	A/D	93.0
TRANSPORTATION, COMMUNICATION AND UTILITIES B/D	B/D	93.0
UPLAND FORESTS A	А	36.0
UPLAND FORESTS A/D	A/D	79.0
UPLAND FORESTS B/D	B/D	79.0
UPLAND FORESTS C/D	C/D	79.0
URBAN AND BUILT-UP A/D	A/D	82.0
URBAN AND BUILT-UP B/D	B/D	82.0
WETLANDS A	A	48.0
WETLANDS A/D	A/D	83.0
WETLANDS B/D	B/D	83.0
WETLANDS C/D	C/D	83.0
Water	-	100.0

Impervious: IMPERVIOUS [Set]

Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious [in]	Ia Pervious [in]
AGRICULTURE A/D	0.00	0.00	0.00	0.000	0.000
AGRICULTURE B/D	0.00	0.00	0.00	0.000	0.000
Coniferous	0.00	0.00	0.00	0.000	0.000
Plantations					
Impervious	0.00	0.00	0.00	0.000	0.000
Pasture	0.00	0.00	0.00	0.000	0.000
Pervious	0.00	0.00	0.00	0.000	0.000
RANGELAND A	0.00	0.00	0.00	0.000	0.000
RANGELAND A/D	0.00	0.00	0.00	0.000	0.000
RANGELAND B/D	0.00	0.00	0.00	0.000	0.000
TRANSPORTATION	0.00	0.00	0.00	0.000	0.000
, COMMUNICATION AND UTILITIES A/D					
TRANSPORTATION , COMMUNICATION AND UTILITIES B/D	0.00	0.00	0.00	0.000	0.000
UPLAND FORESTS A	0.00	0.00	0.00	0.000	0.000
UPLAND FORESTS	0.00	0.00	0.00	0.000	0.000

Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious [in]	Ia Pervious [in]
A/D					
UPLAND FORESTS	0.00	0.00	0.00	0.000	0.000
B/D					
UPLAND FORESTS	0.00	0.00	0.00	0.000	0.000
C/D					
URBAN AND	0.00	0.00	0.00	0.000	0.000
BUILT-UP A/D					
URBAN AND	0.00	0.00	0.00	0.000	0.000
BUILT-UP B/D					
WETLANDS A	0.00	0.00	0.00	0.000	0.000
WETLANDS A/D	0.00	0.00	0.00	0.000	0.000
WETLANDS B/D	0.00	0.00	0.00	0.000	0.000
WETLANDS C/D	0.00	0.00	0.00	0.000	0.000
Water	0.00	0.00	0.00	0.000	0.000

Appendix E – Pond Site Evaluation Matrix

Alternate Pond Site Evaluation Matrix Project Description: SR 16 From International Golf Parkway to I-95 PD&E Study

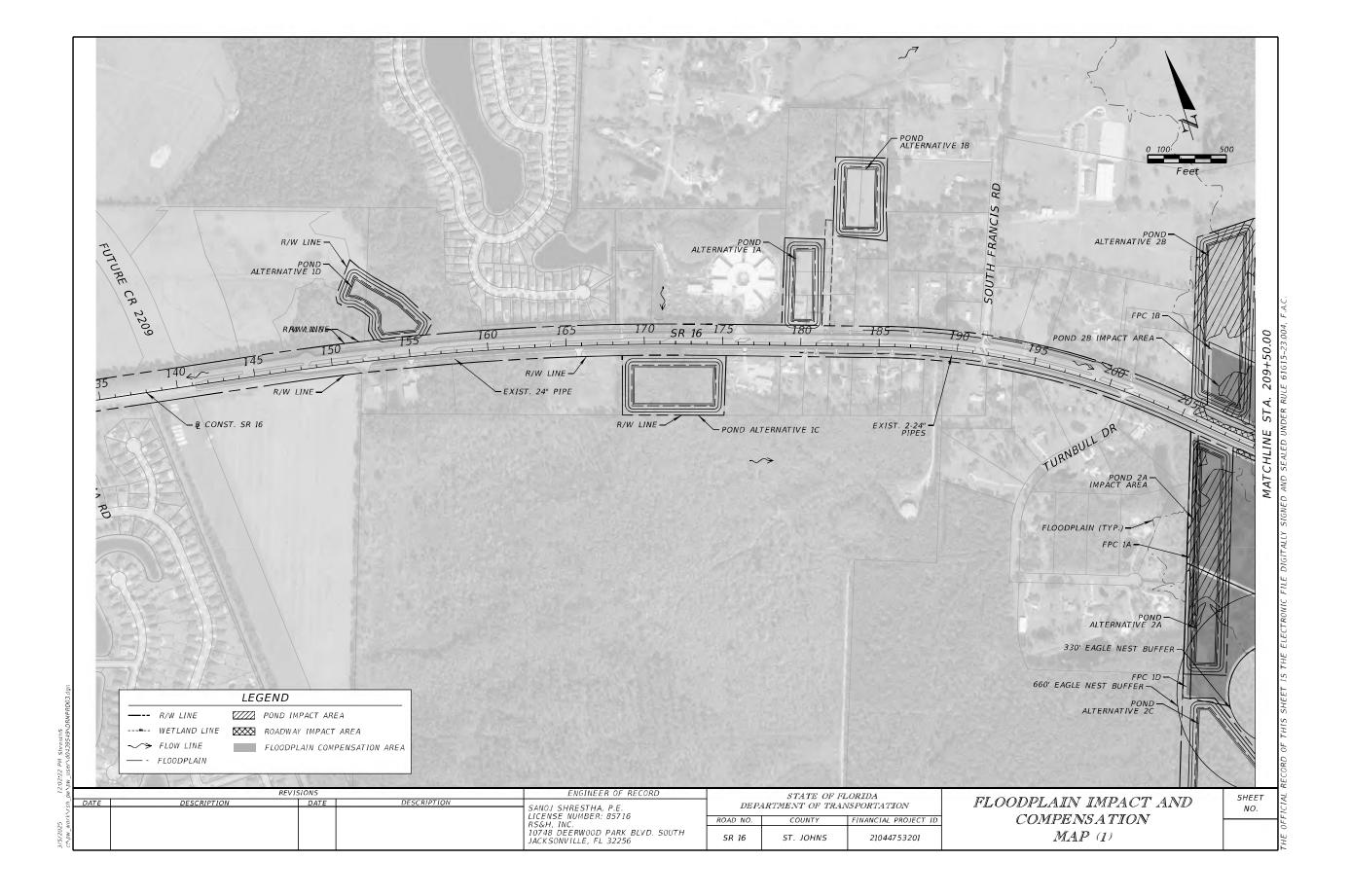
FPID Number: 210447-5-32-01

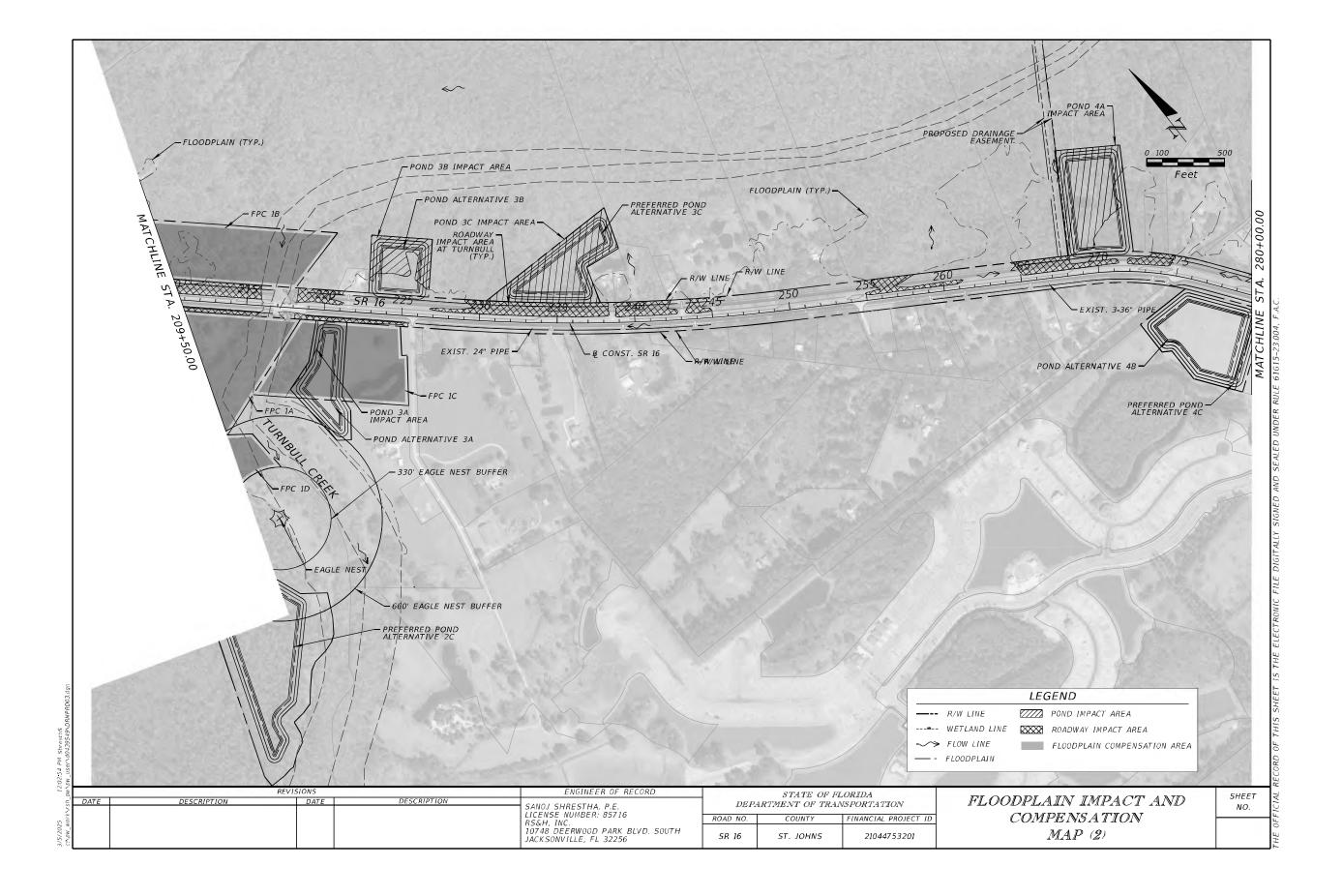
Basin Number		-	I			1+2	
Pond Alternative	1A	1B	1C	1D	2A	2B	2C
Additional Right of Way Needed (acres)	3.26	3.99	5.78	3.59	9.36	10.07	18.60
Required Water Quality Volume (ac-ft)		2.	03		3.81		
Required Water Quantity Volume (ac-ft)		9.	13		35.28		
Groundwater Condition (ft) (Estimated Depth of SHWT)	1.00	0.00	0.50	0.75	1.00	1.00	1.00
Soil Condition (Hydrologic Soil Group)	A/D	A/D	A/D	A/D & C/D	A/D	A/D & C/D	A/D
Potential Hazardous Waste Contaminations	Medium	Medium	Low	Low	No	No	No
Potential Impacts to Protected Species	Low	Low	Low	Low	Moderate	Low	Low
Potential Impacts to Cultural Resources	No	No	No	No	No	No	No
Wetland Impacts (acres)	-	ı.	5.03	1.41	1.07	1.17	0.00
Potential Impacts to Utilities	Moderate	Moderate	Moderate	Moderate Moderate		Moderate	Low
Existing Landscapes (Land Use of Parcel with Pond)	Residential, Low Density (Less than two dwelling units per acre)	Cropland and Pastureland	Wetland Hardwood Forests/Upland Hardwood Forests	Cropland and Pastureland	Vegetated Non-Forested Wetlands/Cropland and Pastureland/Tree Plantations	Tree Plantations/Vegetated Non-Forested Wetlands/Wetlands Forested Mixed/Conservation Easement	Tree Plantations
Adjoining Land uses (Land Use of Parcels Next to Pond Parcel)	Trans/Utilities/Institu tional/Residential, Low Density (Less than two dwelling units per acre)	Cropland and Pastureland/Resident ial, Low Density (Less than two dwelling units per acre)	Trans/Nurseries and Vineyards/Upland Hardwood Forests/Wetland Hardwood Forests	Trans/Wetland Coniferous Forests/Wetland Forested Mixed/Cropland and Pastureland	Trans/Cropland and Pastureland/Wetland Hardwood Forests	Trans/Wetland Hardwood Forests/Tree Plantations	Trans/Cropland and Pastureland/Wetland Hardwood Forests
Right of Way Costs	\$3,127,542	\$2,966,938	\$2,559,048	\$2,278,775	\$4,335,575	\$2,679,250	\$5,036,951
Construction Costs Including Earthwork		\$4,76	4,743		\$3,5	\$6,199,165	
Preferred Pond Alternative	No	No	No	No	No	No	Yes

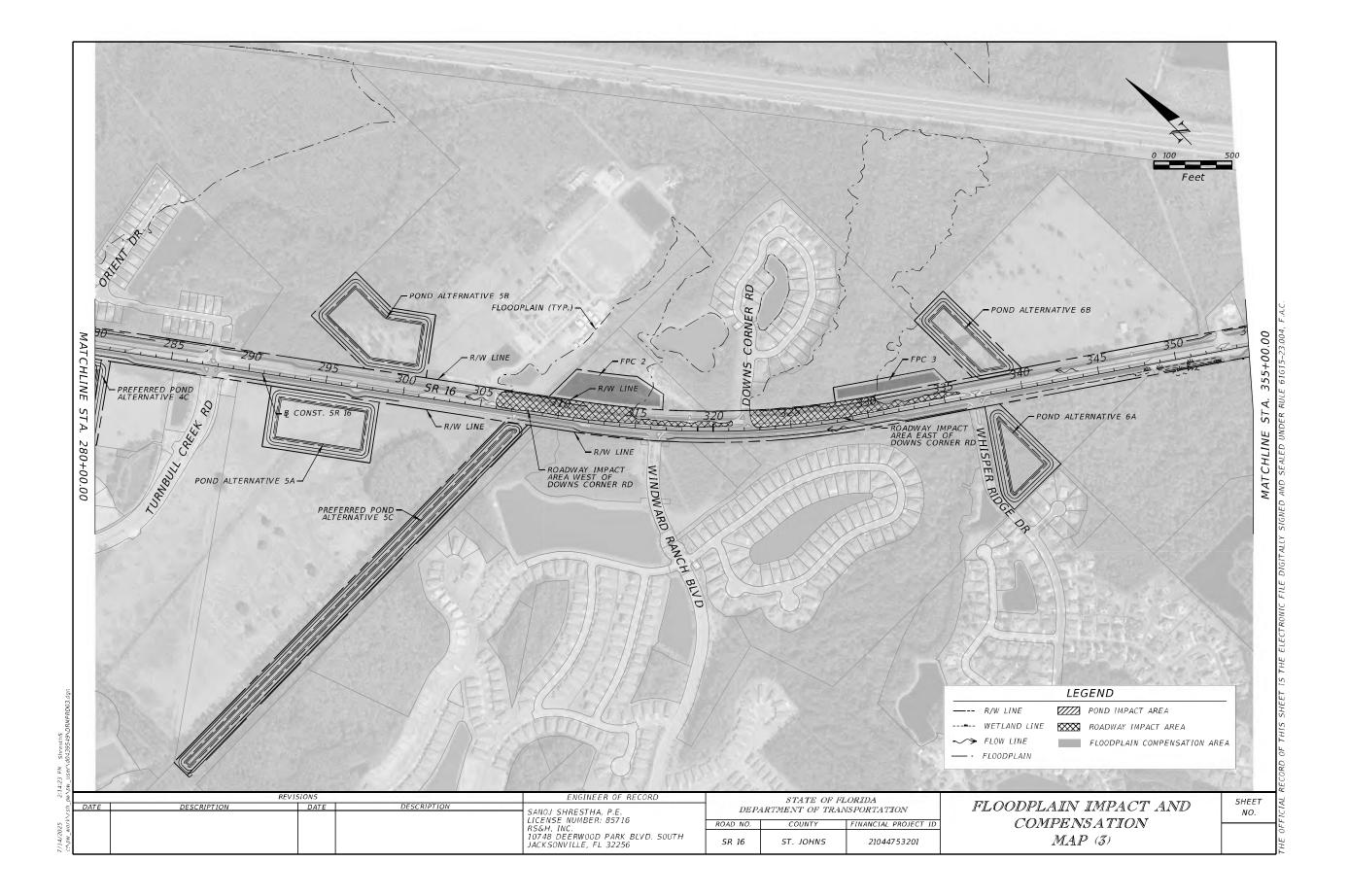
Alternate Pond Site Evaluation Matrix Project Description: SR 16 From International Golf Parkway to I-95 PD&E Study FPID Number: 210447-5-32-01

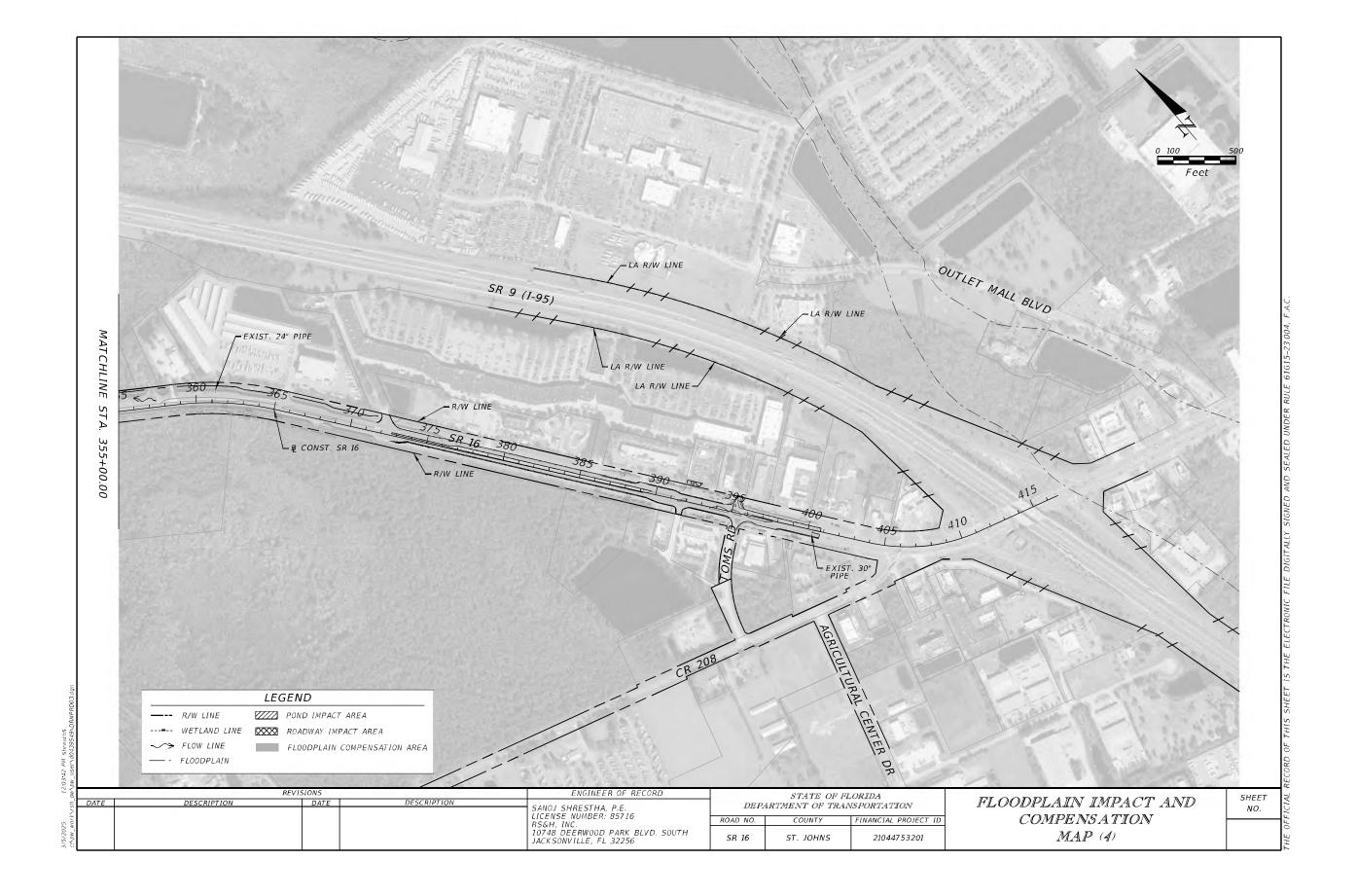
5	ı									I -	
Basin Number		3			4			5	5+6	6	
Pond Alternative	3A	3B	3C	4A	4B	4C	5A	5B	5C	6A	6B
Additional Right of Way Needed (acres)	4.11	3.31	5.18	6.55	6.75	7.45	6.30	6.78	8.14	3.80	3.69
Required Water Quality Volume (ac-ft)		1.90		2.3	37	2.66	2.	12	3.79	1.79	
Required Water Quantity Volume (ac-ft)		10.88		14.	40	25.35	11	.75	25.38	9.98	
Groundwater Condition (ft) (Estimated Depth of SHWT)	1.00	1.00	1.00	1.00	0.50	0.50	1.00	1.00	1.00	1.00	1.00
Soil Condition (Hydrologic Soil Group)	A/D	A/D	A/D	A/D & B/D	A/D	A/D	A/D & B/D	A/D	A/D & B/D	A/D	A/D
Potential Hazardous Waste Contaminations	No	No	No	No	Low	Low	No	Medium	No	No	No
Potential Impacts to Protected Species	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
Potential Impacts to Cultural Resources	No	No	No	No	No	No	No	No	No	No	No
Wetland Impacts (acres)	-	2.17	4.50	0.51	0.57	0.58	3.14	1.14	2.76	0.82	2.54
Potential Impacts to Utilities	Potential Impacts to Utilities Moderate		Moderate	Moderate	Moderate	Moderate	Moderate Moderate		Moderate	Moderate	Moderate
Existing Landscapes (Land Use of Parcel with Pond)	Cropland and Pastureland	Tree Plantations	Wetland Hardwood Forests/Tree Plantations	Upland Hardwood Forests	Cropland and Pastureland	Cropland and Pastureland	Cropland and Pastureland	Tree Plantations/Wetland Forested Mixed/Institutional	Tree Plantations/ Commercial and Services	Tree Plantations/Commercial and Services/ Conservation Easement	Upland Coniferous Forests/Cropland and Pastureland
Adjoining Land uses (Land Use of Parcels Next to Pond Parcel)	Trans/Cropland and Pastureland/Reservoi rs	Trans/Wetland Hardwood Forests	Trans/Wetland Hardwood Forests	Trans/Upland Hardwood Forests/Tree Plantations/Residenti al, Low Density	Trans/Cropland and Pastureland	Trans/Cropland and Pastureland	Trans/Cropland and Pastureland	Trans/Tree Plantations/Wetland Forested Mixed	Trans/Tree Plantations/Wetland Forested Mixed/Wetland Coniferous Forest	Trans/Residential, Medium Density (Two-Five dwelling units per acre)/Upland Coniferous Forests	Trans/Cropland and Pastureland/Upland Coniferous Forests
Right of Way Costs	\$2,755,465	\$924,524	\$993,770	\$5,057,969	\$5,144,666	\$6,062,591	\$5,894,039	\$4,166,765	\$3,130,715	\$2,669,581	\$2,233,367
Construction Costs Including Earthwork		\$1,483,104		\$2,28	8,543	\$2,974,389	\$5,12	20,881	\$6,054,293	\$4,085,7	783
Preferred Pond Alternative	No	No	Yes	No	No	Yes	No	No	Yes	No	No

Pond Site	POND 1A,1B,1C,1D	POND 2A & 2B	POND 2C	POND 3A, 3B, 3C	POND 4A & 4B
Total Site Area (ac)	3.27	9.36	18.60	4.11	4.98
Site Perimeter (ft)	1622	3554	7357	1993	2001
Area at NWL (ac)	1.53	4.81	8.10	1.88	3.78
Average Exist. Ground Elevation (ft)	27.53	22.82	24.08	24.29	24.98
Pond Area at Exist Ground (ac)	1.59	4.76	9.03	1.91	3.88
Pipe Length (ft)	3171.00	618.00	618.00	516.00	327.00


Pay I tem	Description	Unit Price	Quantity	Quantity Cost								
104-10-3	SEDIMENT BARRIER (LF)	\$2.95	1622	\$4,784.90	3554	\$10,484.30	7357	\$21,703.15	1993	\$5,879.35	2001	\$5,902.95
110-1-1	CLEARING & GRUBBING (AC)	\$92,616.02	3.27	\$302,854.39	9.36	\$866,885.95	18.60	\$1,722,657.97	4.11	\$380,651.84	4.98	\$461,227.78
120-1	REGULAR EXCAVATION (CY)	\$30.73	13717.62	\$421,542.47	38937.75	\$1,196,557.11	78462.29	\$2,411,146.23	16659.21	\$511,937.50	35001.70	\$1,075,602.14
425-1-549	INLETS, DT BOT, TYPE D, MODIFY (EA)	\$10,462.42	1	\$10,462.42	1	\$10,462.42	1	\$10,462.42	1	\$10,462.42	3	\$31,387.26
425-2-71	MANHOLES, J-7, <10' (EA)	\$10,893.82	8	\$87,150.56	2	\$21,787.64	2	\$21,787.64	2	\$21,787.64	1	\$10,893.82
430-175-136	PIPE CULVERT, OPT MATERIAL, ROUND, 36"S/CD (LF)	\$313.45	3171	\$993,949.95	618	\$193,712.10	0	\$0.00	516	\$161,740.20	0	\$0.00
430-175-160	PIPE CULVERT, OPT MATERIAL, ROUND, 60"S/CD (LF)	\$641.51	3171	\$2,034,228.21	618	\$396,453.18	618	\$396,453.18	0	\$0.00	327	\$209,773.77
530-3-4	RIPRAP, RUBBLE, F&I, DITCH LINING (TN)	\$253.75	5.0	\$1,268.75	5.0	\$1,268.75	5.0	\$1,268.75	5.0	\$1,268.75	5.0	\$1,268.75
550-10-220	FENCING, TYPE B, 5.1-6.0', STANDARD (LF)	\$34.70	1622	\$56,283.40	3554	\$123,323.80	7357	\$255,287.90	1993	\$69,157.10	2001	\$69,434.70
550-60-234	FENCE GATE, TYPE B, SLIDING/CANTILEVER, 18.1- 20.0' OPENING (EA) (statewide)	\$5,037.99	1	\$5,037.99	1	\$5,037.99	1	\$5,037.99	1	\$5,037.99	1	\$5,037.99
570-1-2 PERFORMANCE TURF, SOD (SY)		\$6.30	8422	\$53,056.08	22022	\$138,738.60	50820	\$320,166.00	10793	\$67,997.16	5808	\$36,590.40
Subtotal				\$3,970,619.11		\$2,964,711.84		\$5,165,971.23		\$1,235,919.96		\$1,907,119.56
Contingency 20%				\$794,123.82		\$592,942.37		\$1,033,194.25		\$247,183.99		\$381,423.91
Total				\$4,764,742.93		\$3,557,654.20		\$6,199,165.48		\$1,483,103.95		\$2,288,543.48

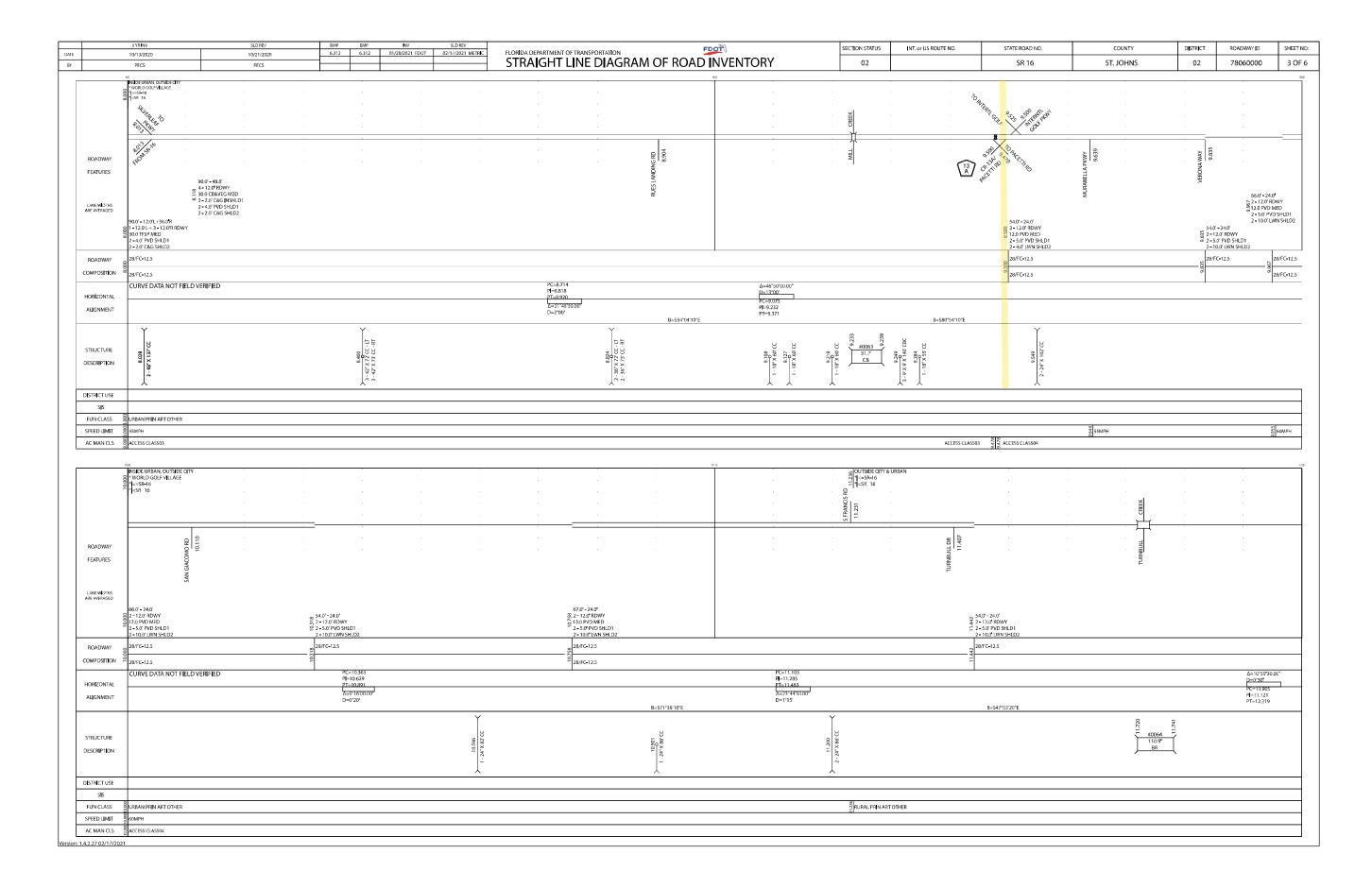

Pond Site	POND 4C	POND 5A & 5B	POND 5C	POND 6A & 6B
Total Site Area (ac)	7.45	4.98	8.14	3.69
Site Perimeter (ft)	2296	2526	6431	1806
Area at NWL (ac)	4.64	2.84	3.66	1.69
Average Exist. Ground Elevation (ft)	24.98	26.35	26.89	34.68
Pond Area at Exist Ground (ac)	4.72	3.21	4.73	1.77
Pipe Length (ft)	327.00	2839.00	2839.00	3606.00

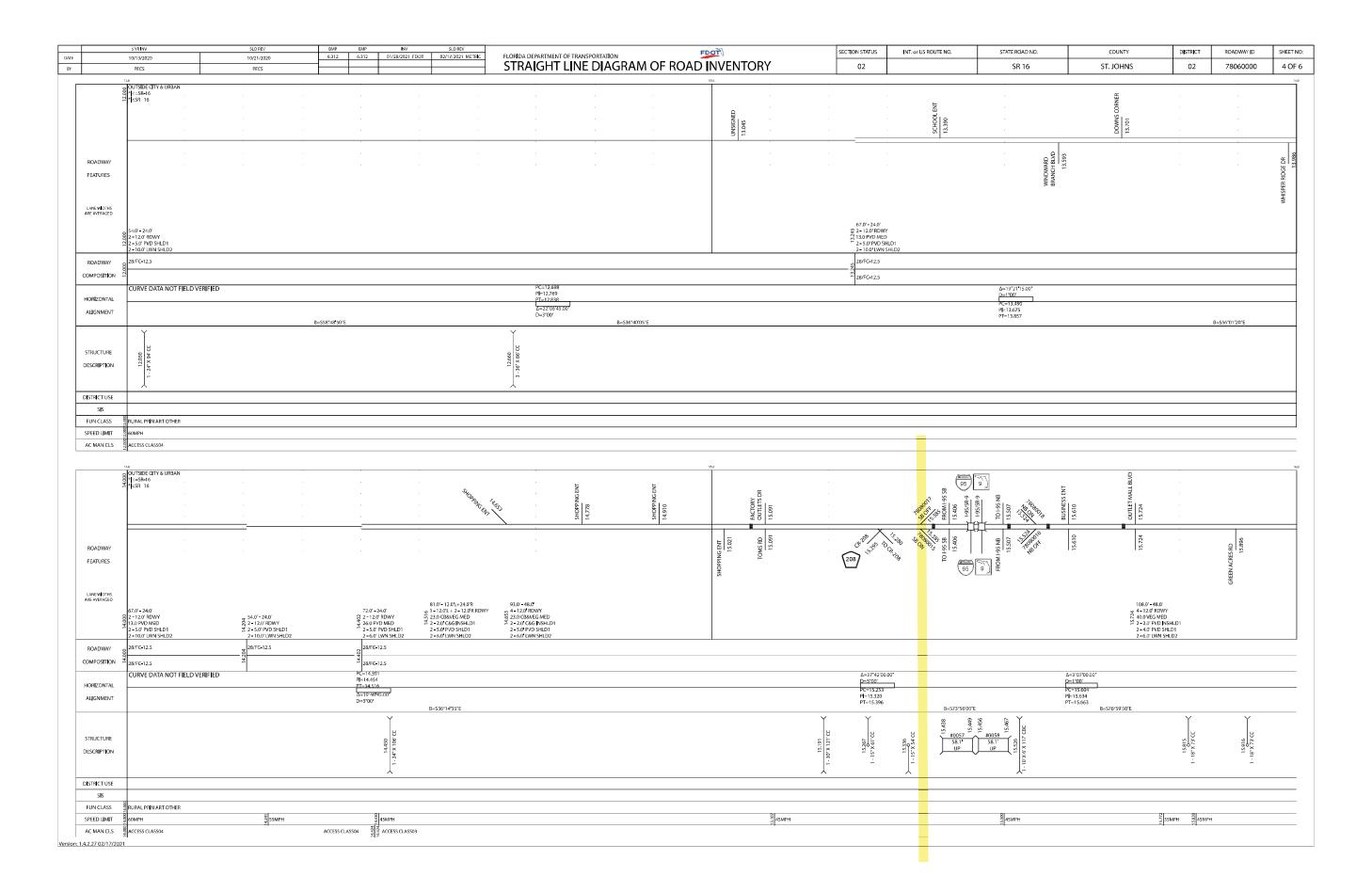

Pay Item	Description	Unit Price	Quantity	Quantity Cost						
104-10-3	SEDIMENT BARRIER (LF)	\$2.95	2296	\$6,773.20	2526	\$7,451.70	6431	\$18,971.45	1806	\$5,327.70
110-1-1	CLEARING & GRUBBING (AC)	\$92,616.02	7.45	\$689,989.35	4.98	\$461,227.78	8.14	\$753,894.40	3.69	\$341,753.11
120-1	REGULAR EXCAVATION (CY)	\$30.73	44878.12	\$1,379,104.52	26007.98	\$799,225.16	35716.46	\$1,097,566.95	15770.64	\$484,631.66
425-1-549	INLETS, DT BOT, TYPE D, MODIFY (EA)	\$10,462.42	1	\$10,462.42	4	\$41,849.68	1	\$10,462.42	2	\$20,924.84
425-2-71	MANHOLES, J-7, <10' (EA)	\$10,893.82	1	\$10,893.82	8	\$87,150.56	8	\$87,150.56	10	\$108,938.20
430-175-136	PIPE CULVERT, OPT MATERIAL, ROUND, 36"S/CD (LF)	\$313.45	0	\$0.00	2839	\$889,884.55	2839	\$889,884.55	0	\$0.00
430-175-160	PIPE CULVERT, OPT MATERIAL, ROUND, 60"S/CD (LF)	\$641.51	327	\$209,773.77	2839	\$1,821,246.89	2839	\$1,821,246.89	3606	\$2,313,285.06
530-3-4	RIPRAP, RUBBLE, F&I, DITCH LINING (TN)	\$253.75	5.0	\$1,268.75	5.0	\$1,268.75	5.0	\$1,268.75	5.0	\$1,268.75
550-10-220	FENCING, TYPE B, 5.1-6.0', STANDARD (LF)	\$34.70	2296	\$79,671.20	2526	\$87,652.20	6431	\$223,155.70	1806	\$62,668.20
550-60-234	FENCE GATE, TYPE B,		1	\$5,037.99	1	\$5,037.99	1	\$5,037.99	1	\$5,037.99
570-1-2 PERFORMANCE TURF, SOD (SY)		\$6.30	13600	\$85,682.52	10382	\$65,405.34	21683	\$136,604.16	9680	\$60,984.00
Subtotal				\$2,478,657.54		\$4,267,400.60		\$5,045,243.82		\$3,404,819.51
Contingency 20%				\$495,731.51		\$853,480.12		\$1,009,048.76		\$680,963.90
Total				\$2,974,389.05		\$5,120,880.72		\$6,054,292.58		\$4,085,783.41


Appendix F – Floodplain Impact and Compensation Maps

Appendix G – Floodplain Compensation Site Evaluation Matrix

Alternate FPC Site Evaluation Matrix


Project Description: SR 16 From International Golf Parkway to I-95 PD&E Study


FPID Number: 210447-5

Impact Location		Turnbu	II Creek		West of Downs	East of Downs	
				1	Corner Rd	Corner Rd	
FPC Alternative	1A	1B	1C	1D	2	3	
FPC Additional Right of Way Needed (acres)	15.79	11.82	9.60	8.64	2.78	1.58	
Estimated Right of Way Costs	\$9,762,516		\$3,283,813	\$6,482,559	\$5,341,871	\$1,779,200	\$1,011,200
Hazardous Materials	No	No	No	No	Low	Low	
Utilities Impacts	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	
Maintenance	Roadside Access	Roadside Access	Roadside Access	Easement Required	Roadside Access	Roadside Access	
Cultural Resources Impacts	Low	Low	Low	Low	Low	Low	
FEMA Flood Zone	AE	AE	AE	AE	AE	AE	
FEMA Flood Zone Impacts (acres)		23	5.2		2.59	2.37	
Wetland Impacts (acres)	3.84 5.04		1.04	0.74	0.54	0.27	
Habitat Impacts	Moderate	High	High	Moderate	High	High	
Other Environmental Impacts (parks/springs)	Low	Low	Low	Low	Low	Low	
Number of Property Owners	1	1	1	1	1	1	
Land Use Zoning	Cropland and Pastureland/ Vegetated Non- Forested Wetlands	Tree Plantations/ Reservoirs	Cropland and Pastureland/ Reservoirs	Cropland and Pastureland/Tree Plantations	Wetland Hardwood Forests	Wetland Hardwood Forests/Upland Coniferous Forests	
Advantages	Roadside Access, Parcel is for sale	Roadside Access	Roadside Access	Parcel is for sale.	Roadside Access, Undeveloped Parcel	Roadside Access, Undeveloped Parcel	
Disadvantages, etc.	Located in SR-16 Frontage	Located in Conservation Easement, Located in SR-16 Frontage	Residental Parcel	Easement requried for maintenance access	Located in SR-16 Frontage	Located in SR-16 Frontage	
Preferred FPC Alternative	No	No	No	Yes	Yes	Yes	

Appendix H – Straight Line Diagrams

DATE BY		5 YR INV 10/13/2020 PECS	SLD REV 10/21/2020 PECS	BMP EMP 6.312 6.31:		SLD REV 02/17/2021 METRIC	FLORIDA DEPARTMENT O	F TRANSPORTATION	RAM OF	ROAD II	oī∜ NVENTO	ORY		SECTION STATUS	INT. or	US ROUTE NO.	_	ROAD NO.		COUNTY . JOHNS		80ADWAY ID 78060000	SHEET NO: 5 OF 6
		160 OUTSIDE CITY & URBAN 8 * <= SR-16 2 * <sr-16< th=""><th></th><th></th><th></th><th></th><th></th><th>ь</th><th></th><th>SLVD</th><th>7.0</th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>INSIDE URBAN, OUTSI 66 * ST. AUGUSTINE 72 * K=SR-16 1 < SR 16</th><th>DE CITY</th><th>18.0</th></sr-16<>						ь		SLVD	7.0						•				INSIDE URBAN, OUTSI 66 * ST. AUGUSTINE 72 * K=SR-16 1 < SR 16	DE C I TY	18.0
		16.003				•		Ę	16.849	STRATTONE		•									TESK 10		
	ROADWAY	HARNEST LN 16.003	OLD TOWN PKWY	FORTNER RD	16.410			RACE TRACK RD 16.790					STRY CENTER RD 17.145		UNSIGNED 17.322	PLEASURE LN 17.392	UNSIGNED 17,492	CIRCLE DR E			S. C.	UNSIGNED 17.918	
	LANE WIDTHS ARE AVERAGED	108.0° - 48.0° 8 4 - 12.0° RDWY 8 40.0 VEG MED 2 2 - 2.0° PVD NISHLD1 2 - 4.0° PVD SHLD1 2 - 6.0° LWN SHLD2											ndn										
	ROADWAY &	28/FC-12.5 28/FC-12.5																					
	HOR I ZONTAL ALIGNMENT	CURVE DATA NOT FIELD VERIFIED				Δ=25°09'00.00" D=2°00' PC=16.537 PI=16.658 PT=16.776		B=N77°51'10"E		P 2	C=16.994 =17.052 T=17.110 D=12°16'00.00° D=2°00'	B=S	89°52'50"E				D=2°			N72°04'40°E	PC=17.819 PI=17.904 PT=17.985 Δ=17"34'00.00" D=2"00"	В=	N89°41'40"E
	STRUCTURE DESCRIPTION	20 27 X X 81 - 1	16.213 1 - 18" X 72 CC			16573 1 - 18" X 72 CC	16.658 2-9 x 3 x 75 CBC - LT 2-9 x 3 x 75 CBC - RT	16,795 1 - 18" X 72" CC		16,998	1 - 18" X 73' CC					17362 1 - 18" X 72" CC	17.459 1 - 18" X 73°CC		17.663 1-7.84.7/5 CBC-LT	1-7'X4'X75'CBC-RT 17738 1-6'X3'X75'CBC-LT 1-6'X3'X75'CBC-RT			1 - 18" X 82" CC 17.979
С	DISTRICT USE SIS																						
	SPEED LIMIT S	RURAL PRIN ART OTHER 45MPH ACCESS CLASS03	55MPH																		URBAN PRIN ART OTH	ER	
		18.0								15	9.0 I												20.0
	900 81	NSIDE URBAN, OUTSIDE CITY 87 ST. AUGUSTINE 14 SSR. 16 JO 55 SSR 16 JS	18.167 DAVESTON AVE		18.440	WOODLAWN RD 18:579	VILLAGE CROSSING CT 18.728	N TENTH ST	N NINTH ST 18.873	N EIGHTH ST 18.932 N SEVENTH ST 18.983	N SIXTH ST 19.034	N FIFTH ST 19.087	19.143 NTHIRD ST 19.192	N SECOND ST	19.303	LORD ST 19.372 COLLINS AVE	19.421	USINA ST 19.552	ARTHUR ST 19.635	19.720	VARELLA AVE	EL REY AVE 19.927	
	ROADWAY			SHOPPING ENT		ON MORNSON RD 18.579			COLLEGE DR 18.873				ST AGUSTIA PKW			SHOPPING ENT 19.372 S COLLINS AVE	19.421 SCHALLER RD	19.552	DAIRY AVE 19.603	19.720	19.806 FORTUNA AVE 19.844	19.927	
	LANE WIDTHS ARE AVERAGED	108.0" - 48.0" 8 4 - 12.0"RDWY 8 40.0 VEG MED 22 - 2.0" PVD NSHLD1 2 - 4.0" PVD SHLD1 2 - 6.0" LWN SHLD2				KEN							ROYAL			£ 1	4.0' – 48.0' - 12.0' RDWY 2.0 PAVED TURN LANE (- 2.0' C&G SHLD1	TWLTL/TURN) MEG	D				
	ROADWAY S	28/FC-12.5 28/FC-12.5															8/FC - 0						
	HOR I ZONTAL ALIGNMENT	CURVE DATA NOT FIELD VERIFIED					Δ=0°52°							PC=19.231 PI=19.308 PT=19.384 Δ=8"04'00.00" D=1°00'	I			Δ=7°22'00.0 D=2°00' PC=19.538 PI=19.573		PC=19.79 PI=19.79 PT=19.84 A=15°54 D=3°00'	700.00"		
	STRUCTURE DESCRIPTION		18,176 1 - 18° X 72° CC	18.348 1-18.773 CC	18.516 1 - 18" X 84" CC		18.622 1.6'x6'X149'CBC 1.18'727 1.18'X/3'CC	3=N88°49'40"E	18.384 0 1 - 18"X 73" CC	18.935 1 - 18" X 73" CC 1 - 18" X 73" CC 1 - 18" X 73" CC	19.049 1-18"X 73" CC	19.097 1 - 18" X 73° CC	19,150 19,200 19,200 1,18° X 73° CC		19.313 1 - 8'X 4'X 130' CBC 19.339 1 - 18" X 73' CC			PT=19.608	B=N89°31'40°E	υ=s-00			
С	DISTRICT USE SIS			^			^			^ ^	^	^			X X								
_	FUN CLASS SPEED LIMIT	URBAN PRIN ART OTHER			55MPH										86 86	мрн							
	AC MAN CLS	ACCESS CLASS03			21										ACCE	SSS CLASSO3	ACCESS CLASSO6						